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Abstract. In this work we apply simple linear and polynomial regression to model the time
series of at-the-money (ATM) local volatility of Microsoft stocks and predict its out-of-sample
values. Multiple researches consider ATM local volatility to be a good measure of the expected
variance of the stock so predicting such measure allows trader to use successfully different option
strategies and gain profit by trading volatility options.

We assumed that Microsoft stock price follows Dupire local volatility process and applied
genetic algorithm of optimization to calibrate local volatility matrix from the set of Microsoft option
prices. We repeated this procedure on multiple calibration dates and obtained a vector of ATM only
values (at different calibration dates) per maturity. We applied linear regression to model these
time series.

Model validation is done on a cross-validation dataset and a predictive dataset. We chose
MSE (mean squared error) to be a measure of quality of the prediction. We also measure the
statistical significance and predictive ability of such model and study autocorrelation tendencies.

ANOVA suggests that assumptions to use linear regression are held. No autocorrelation
tendencies were discovered in the time series. Finally we conclude that neither 1° nor 3™ order
linear regression has a predictive ability over out-of-sample local volatility despite 3 order model
fits the data much better for different datasets. Moreover there is no linear relationship between
correlation date and local volatility so such models are statistically insignificant and can’t be used
to forecast local volatility values.

Keywords: Local volatility, Dupire local volatility process, genetic algorithm,
autocorrelation, polynomial regression, genetic algorithm, statistical significance, forecast.

Local volatility matrix is calibrated from prices of Vanilla options (Calland Put)
available in the market. We want to calibrate such matrix at different dates in the
past. We call these dates “calibration dates”. It’s done to be able to model the time
series of the local volatility and predict its out-of-sample (OOS) values.

Each vanilla option 1s characterized by its maturity and strike price and for each
such option the local volatility is calibrated by assuming that its underlying asset’s

price follows Dupire model [1].
dSt = St(/.l,dt -+ O'(St,t)th) (1)
That’s why this volatility 1s called local as 1t has unique value for each maturity

and strike. In simpler Black Sholes model it’s a unique scalar independent of the
maturity at given strike [2].
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Input data 1s a set of prices of Vanilla options on MSFT stocks from NASDAQ.
Option prices are available for multiple trading dates between January and April
2020. The period 1s also interesting as there were huge jumps of volatility. As input
data 1s sparse and maturities/strikes differ between calibration dates we use linear
interpolation on maturity axis to obtain the same grid for each of calibration dates and
fill missing values. The grid is represented by these fractions of the year:

Maturities grid (N = 6): [0.05,0.1,0.15,0.2,0.25,0.4 ] 2)

Given N — number of maturities and M — number of strikes we firstly calibrate
N X M matrix (ex. Fig.1) from the set of options for each of K calibration dates using

genetic algorithm of optimization of Cerf [5] to handle the ill-posed character of the
problem [3]. To improve the convergence of the algorithm we use adaptive weight
coefficients to give more significance to near-the-money and at-the-money (ATM)
values (1.e. local volatility corresponding to options whose strike is close or equals to
the spot price of the underlying asset) [4]. Hence we obtain K matrices of N X M

dimensionality similar to one on Fig.1.

Local volatility surface at t =01/24/2020 i.e. t=0.057534
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Fig.1. Local volatility matrix calibrated at t=01/24/2020

Multiple researches consider ATM local volatility to be a good measure of the
expected variance of the stock [6] so predicting such measure allows trader to use
successfully different option strategies and gain profit by trading volatility options.
Therefore because of its practical significance but also to reduce the dimensionality
of the problem we extract only ATM local volatilities. Thus we get rid of strike axis
and obtain N X K matrix of local volatilities. Basically we obtain the term structure of

ATM local volatility for each maturity (ex. For maturity T = 0.05 1s on Fig.3).
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Our term structure corresponds to calibration dates from Table 1 and Table 2.
Table 1
Cross validation dataset

Calibration | 01/03/ | 01/10/ 01/24/ |01/31/ |02/07/

Dates 2020 |2020 2020 2020 2020

Validation 01/17/ 02/14/ | 02/21/

dates 2020 2020 2020

(00YS)

Spot MSFT | 158.62 | 161.34 | 167.10 | 165.04 | 170.23 | 183.89 | 185.35 | 178.59
00 00 00 00 00 00 00 00

Calibration | 02/28/ | 03/06/ 03/20/ | 03/27/ | 04/03/

Dates 2020 |2020 2020 2020 2020

Validation 03/13/ 04/09/ | 04/17/

dates 2020 2020 2020

(0O0YS)

Spot MSFT | 162.01 | 161.57 | 158.83 | 137.35 | 149.70 | 153.83 | 165.14 | 178.60
00 00 00 00 00 00 00 00

Table 2
Predictive validation dataset

Calibration | 01/03/ | 01/10/ | 01/17/ | 01/24/ |01/31/ | 02/07/ |02/14/ |02/21/

Dates 2020 |2020 |2020 2020 2020 2020 2020 2020

Validation

dates

(00YS)

Spot MSFT | 158.62 | 161.34 | 167.10 | 165.04 | 170.23 | 183.89 | 185.35 | 178.59
00 00 00 00 00 00 00 00

Calibration | 02/28/ | 03/06/

Dates 2020 | 2020

Validation 03/13/ |03/20/ |03/27/ |04/03/ |04/09/ |04/17/

dates 2020 2020 2020 2020 2020 2020

(0O0S)

Spot MSFT | 162.01 | 161.57 | 158.83 | 137.35 | 149.70 | 153.83 | 165.14 | 178.60
00 00 00 00 00 00 00 00

Our further modeling is inspired by the research conducted by Christensen who
finds that implied volatility is better predictor of realized volatility than past realized
volatility [6]. In this article we want to study only the term structure of ATM local
volatility before making any predictions of realized one.
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Christensen’s main point was to take non-overlapping data (calibration date +
option maturity < next calibration date). We have much shorter data at disposal so we
didn’t focus on exclusion of overlapping data. Instead for each calibration date we
calculate ATM local volatility values not just for non-overlapping but for all
maturities. It allows us to study the autocorrelation as overlapping effect and see if it
impacts significantly the quality of our model.

Linear (3) and polynomial (4) regressions [7] are chosen as instruments to model
ATM local volatility (dependent variable) w.r.t. K calibration dates (predictor
variable) at each of N maturities. The model 1s defined as (3)

LocalVol (t) =ar+ by *t 3)
LocalVol (t) =a;+ by =t +ep*t2> +dp *t3 4)

We verify regression assumptions using graphical analysis of distribution plots
of residuals (ex. Fig.2).

Cross-validation set Predictive validation set

Analysis: Histogram of residuals, T=0.05
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Fig. 2 ANOVA for cross-validation and predicitve sets at T=0.05
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For each maturity we use such indicators as r-squared, t and F-statistics, and out-
of-sample MSE [8] (mean squared error) (5) to evaluate the quality of regression
model (Tables 3, 4, 5, 6). Durbin-Watson test is conducted to determine the presence

of autocorrelation (may be caused by overlapping) in our data [9].

()

We validate simple linear and polynomial models on two different sets of
calibration/validation dates. Cross validation [10] shows if the model can successfully
predict ATM local volatility in intermediary OOS dates (Table 1) while predictive
validation uses extrapolated OOS calibration dates (Table 2).

We do two runs on each set (basically recalibrating local volatility twice) in
order to reflect on ill-posedness of Dupire optimization problem [3]: no unique
solution exists. So two runs allow us to use two different inputs (local volatility
matrices) to regression model and potentially obtain different results.

We use MSE and analysis of plots to measure the quality of predictions and
validate obtained results. Finally we try to make some conclusions on validity and
predictive ability of such models.

Numerical results

ANOVA (analysis of variance) [11] is conducted to verify the assumptions
necessary to use the linear regression.

On Fig.2 we can see that residuals seem to be normally distributed for cross-
validation and prediction sets so the assumption to use the linear regression are held.

Let’s take a look at numerical results obtained for the first dataset.

For cross validation set Fig.3 and Fig.4 illustrate the dynamics of calibrated
ATM local volatility for the maturities T=0.05 and T=0.4 respectively; as well as the
regression plots (modeled local volatility) that we have built (1% and 3™ order).

For the second (predictive validation) set we ilustrate the same data on Fig.5 and
Fig.6.

Subplots illustrate the dymamics of underlying MSFT stock price whose peaks
correspond to volatility peaks as we can see. We won’t focus on this relationship as
it’s in the definition of Dupire model that local volatility is a function of underlying
asset price.

Table 3 illustrates the statistics of the 1% order regression model for two different
calibration runs (different ATM local volatility as input) for both cross-validation and
predictive sets.

Table 4 illustrates the statistics of the 3™ order regression model for two
different calibration runs (different ATM local volatility as input) for both cross-
validation and predictive sets.

Graphical analysis

As we see on the Fig.3 and Fig.4, using 3™ order linear regression does improve
the fit. However on Fig.5, 6 we also observe that for predictive dataset it also shows
very bad results on OOS validation points (huge prediction error).

Form Fig.3, 4 we observe apparent correlation between stock price jumps and
local volatility jumps. By definition of Dupire’s model local volatility is a function of
the stock price so it’s not surprising.
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Fig. 3. Calibrated and modeled local volatility values (w.r.t. date) at T=0,0S,
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Fig.4. Calibrated and modeled local volatility values (w.r.t. date) at T=0,4,

Cross-Validation set
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Table 3
Stat 1* order linear regression, Cross-Validation and Predictive sets
CROSS VALIDATION SET
RUN 1
T Rsq tStat pValue | Fstat pValue | DW | pValue | MSE
0,05 10.0722 [ 0.78892 |0.4529 0.622 10453 |2.7711 ] 0.5066 |1.1020
0,1 10.0427 ]0.5971 0.56695 |0.357 [0.567 [2.79210.4803 |0.8701
0,15 10.0267 |0.46843 |0.65198 |0.219 |0.652 |2.7533]0.5294 ]0.7043
0,2 10.0169 |0.3703 0.72077 10.137 [0.721 |2.6899|0.6133 |0.5779
0,25 10.0137 ]0.33354 |0.7473 0.111 0.747 12.6127 | 0.7205 | 0.4858
0,4 10.0245 ]0.44856 |0.66565 |0.201 0.666 |2.4207 1 0.9995 |0.3588
RUN 2
T Rsq tStat pValue | Fstat pValue | DW pValue | MSE
0,05 10.0029 |0.15303 |0.88217 |0.0234 |0.882 |2.7245]0.5670 |0.7920
0,1 |0.0029 0.075008 0.94205 | 0.00563 | 0.942 |2.7164 |0.5778 | 10.9879
0,15 10.0027 |-0.14757 | -0.14757 1 0.0218 | 0.886 |2.5704 | 0.7809 |0.0565
0,2 10.0035 |-0.16741 | -0.16741 | 0.028 |0.871 |2.4130]0.9894 |1.3127
0,25 10.0014 |-0.10563 1 0.91847 |0.0112 |0.918 |2.2683|0.7811 |5.4034
0,4 10.0282 [0.48174 ]0.64289 10.232 10.643 | 1.7931]0.2489 |0.0615
PREDICTIVE SET
RUN 1
T Rsq tStat pValue | Fstat pValue | DW pValue | MSE
0,05 | 0,0665 |0,7550 |0,4718 0,57 0,472 |2,1683|0,6536 | 1.62185
0,1 10,0246 |0,44937 |0,6650 0,202 0,665 |1,8612]0,3129 | 1.77455
0,15 | 0,00771 | 0,2493 0,8094 |0,0622 |0,809 |1,76 |0,2312 |1.597367
0,2 |0,00289 | 0,1522 0,88276 |0,232 |0,883 |1,7166|0,2005 | 1.010617
0,25 1 0,00175 | 0,1185 0,9085 0,014 0,909 |1,6910]0,1839 |0.7554
0,4 10,00901]0,26973 |0,7941 0,0728 10,794 |1,4869 | 0,0835 |0.591483
RUN 2
T Rsq tStat pValue | Fstat pValue | DW | pValue | MSE
0,05 | 0.2387 | 1.5838 0.1519 |2.51 0.152 |2.2346 | 0.7426 |0.3800
0,1 ]0.0700 |0.77576 |0.46021 |0.602 |0.46 2.2862 | 0.8146 |0.3609
0,15 | 0.0013 |0.10064 |0.92231 |0.0101 |0.922 |2.1830|0.6730 |0.4178
0,2 |0.0107 |-0.29444 |0.77592 |0.0867 |0.776 |2.1200|0.5917 | 0.5505
0,25 | 0.0296 |-0.49384 | 0.63469 |0.244 |0.635 |2.0818]0.5448 | 0.6236
0,4 ]0.0441 |-0.60744 | 0.5604 |0.369 |0.56 2.1609 | 0.6439 | 0.5586
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Table 4

Stat 39 order linear regression, Cross-Validation and Predictive sets

CROSS_VALIDATION SET

RUN 1

T Rsq Fstat Evalu DW pValue | MSE
0,05 |03466 [1.06 |0.433 |3.3249 |0.2643 |2.2290
0,1 02532 0678 |0.597 |3.1504 |0.5084 | 1.6553
0,15 |0.1980 [0494 |07 [3.0213 [0.7299 |1.2441
0,2 101698 [0409 [0.752 |2.9279 |0.8984 |0.9266
0,25 |0.1646 0394 [0.762 |2.8588 [0.9765 |0.6804
0,4 102150 |0.548 |0.668 |2.7809 |0.8385 |0.3412
RUN 2

T Rsq Fstat EValu DW pValue MSE
0,05 |0.1451 [0339 [0.798 [3.0525 |0.5670 |1.0515
0, 102543 [0682 [0.682 [3.3958 |0.1882 |11.4535
0,15 103394 [1.03 |0445 [3.5080 |0.0953 |0.1000
02 103967 [131  |0354 [3.5053 |0.0971 |1.0687
0,25 104308 [1.51  |0304 [3.4415 |0.1463 |3.3493
04 105279 [224  [0.185 | 3.0253 |0.7228 | 0.0480
PREDICTIVE SET

RUN 1

T Rsq | Fstat gvah‘ DW  |pValue |MSE
0,05 |0,101 |0,225 |0,876 |2,2940 |0.2854 | 1.447833
0, 00758 ]0,064 0,917 |1,9728 ]0,0720 | 0.914233
0,15 |0,0801 |0,174 091 |1,86 |0,0380 |1.156333
0,2 10,098 | 0,219 0,881 [1,8387 |0,0314 [0.930917
0,25 |0,113 |0,254 |0,856 |1,8260 |0,0287 |0.753033
04 0192 0476 071 |1,7416 |0,0146 |0.487983
RUN 2

T Rsq Fstat EValu DW pValue MSE
0,05 03741 |12 0.388 |2.6956 |0.7426  |2.6968
0,1 04477 |1.62 0281 |3.1316 |0.4939  |4.2388
0,15 |0.4814 |1.86 0238 |2.9443 [0.7971  |5.5686
0,2 |0.4887 |1.91 0229 |2.6847 |0.7713  |6.6982
0,25 |0.4928 |1.94 0224 |2.5788 |0.6151 |7.6306
04 05155 |2.13 0.198 |2.9325 |0.8170 | 7.2618
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ANOVA graphs on Fig.2 demonstrate that the assumptions are held and
residuals seem to be normally distributed so linear regression can be used to model
the relationship.

Let’s now analyze R-squared

In terms of r-squared we can state form Tables 3, 4 that 1* order regression has
very low fit and is unable to fit well the data. We can justify it by volatile character of
the data as we studies crisis period from January 2020 to April 2020.

However the 3™ order regression fits the data much better in terms of r-squared
for both datasets. Volatile character of the data in the crisis period justifies using 3
order model to fit the data.

Good fit does not imply good predictive ability so we study regression statistics
to see the significance of such model. We also validate it on OOS data points.

Let’s now analyze T-statistics

Null hypothesis designs the absence of linear relationship between calibration
dates and local volatility.

pValue is a probability to observe T-statistics as extreme or more extreme than
the one under null hypothesis which is equivalent to approval of null hypothesis. So
lower pValue means that there are more chances to reject null hypothesis and more
chances that there is a linear relationship between the independent and the dependent
variable.

We reject null hypothesis if pValue is lower than significance level we choose
(5% in our case).

Looking at Table 3 we state with 95% probability that calibration date has no
linear relationship with local volatility so it does not make sense to include it into the
model for given sample. It is the case for all maturities for both runs for both datasets.
The calibration date is not a significant predictor for local volatility in 1% order linear
model.

Let’s analyze F-statistics

F-statistics shows whereas the whole model is better than intercept-only model
(simple mean). Let’s take a look at F-statistics in the Table 3 and Table 4. Choosing
5% significance level we can conclude that neither 1% nor 3™ order linear regression
model can outperform simple mean. So both of them are overall insignificants. It
holds for both datasets.

Let’s analyze auto-correlation Durbin-Watson criteria:

Null hypothesis is absence of autocorrelation between residuals.

Significantly low pValue means that we can reject null hypothesis and state
autocorrelation. We use level of significance at 5%.

Looking at Table 3 we state that pValue is quite large for all maturities. So we
conclude that no autocorrelation is present for 1% order regressions for cross-
validation dataset.

Looking at Table 4 we state that pValue is quite large for all maturities. For the
RUNT in Predictive dataset however we have lower pValues that can pass the level of
significance of 5% for 3™ order model. So we conclude that there can be an
autocorrelation of residuals for 3™ order model for some runs. However as the whole
model is not efficient nor significant we are not interested in getting rid of this
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phenomena.

We could also suggest that there is no autocorrelation in general case as the data
has quite little or no overlapping nature as for calibration we used MSFT options with
quite short maturities.

Out-of-the-sample MSE analysis

We can also see it in MSE measure on out-of-the-sample points:

In Table 3 we observe that for 1% order regression models out-of-sample MSE is
quite far from 0 which means we cannot use these models to predict local volatility at
validation dates. This holds for both datasets.

In Table 4 we also observe that for 3™ order regression models out-of-sample
MSE is quite far from 0 which means we cannot use these models to predict local
volatility at validation dates. This holds also for both datasets.

Conclusions

In current work we calibrated local volatility from two different datasets and two
different runs. Therefore we could perfectly observe the multiplicity of solutions of
Dupire calibration problem implied by ill-posedness of the problem. We observe this
multiplicity rather than try to eliminate it.

Firstly by conducting graphical analysis we observe that for both runs and both
datasets there is an apparent correlation between stock price jumps and local
volatility jumps. It’s normal as functional relation is implied by Dupire’s model.

Secondly by analyzing ANOVA graphs we can state that the assumptions are
held and residuals seem to be normally distributed so linear regression can be used to
model the time-series of local volatility.

Thirdly we conclude that 3™ order regression model fits the data much better in
terms or r-squared than 1% order one. Volatile character of the data in the crisis period
justifies using 3™ order model to fit the data.

Fourthly by analyzing t- and F-statistics for both 1% and 3™ regression models
we conclude that calibration date has no linear relationship with local volatility so it
does not make sense to include it as factor into the model. Both models are overall
insignificant.

Fifthly we analyze autocorrelation of residuals for both models using Durbin-
Watson test. We conclude that in general there is no autocorrelation despite it is
present in some runs for some maturities. The absence of autocorrelation can be
explained by little or no overlapping nature of observations as we use quite short
maturities.

Finally despite statistical insignificance of our regression models we study their
predictive ability by analyzing MSE measure on out-of-sample data points. For both
models and datasets we conclude that we cannot use calibration date as predictor for
local volatility. We will lean on this conclusion in our further research to exclude
calibration date from the list of volatility predictors.

References

1. Dupire, B.: Pricing with a smile. Risk, 7(1), 18-20 (1994)

2. Black, Fisher S.; Scholes, Myron S.: The Pricing of Options and Corporate
Liabilities, Journal of Political Economy, 81(3), 637-654 (1973)

ISSN 2663-5712 115 www.sworldjournal.com



g

=
SWorldJournal Issue 7 / Part 2 /\1:"‘}}

3. Ben Hamida, S., Cont, R.: Recovering volatility from option prices by
evolutionary optimization. Journal of computational finance, 8(4), 18-33 (2020).
http://dx.doi.org/10.21314/JCF.2005.130

4. Bondarenko, M., Bondarenko, V.: On dynamics of at-the-money local
volatility calibrated from time series of VIX option. Modern engineering and
innovative technologies, 12(6), 1-20 (2018).
http://dx.doi.org/10.21511/nfmte.7.2018.01

5. Cerf, R.: Asymptotic convergence of genetic algorithms. Advances in Applied
Probability, 30(2), 521-550 (1998). https://doi.org/10.1239/aap/1035228082

6. Christensen, B.J., Prabhala, N.R.: The relation between implied and realized
volatility, Journal of Financial Economics, 50, 125—150 (1998).

7. Chatterjee, S. and Hadi, A.S.: Regression Analysis By Example, 5th ed., John
Wiley and Sons, New York, 2012.

8. Rouaud, M.: Probability, Statistics and Estimation.
http://www.incertitudes.fr/book.pdf Accessed 3 February 2021.

9. Durbin, J.; Watson, G. S.: Testing for Serial Correlation in Least Squares
Regression, 1. Biometrika. 37 (3—4): 409428 (1950). doi:10.1093/biomet/37.3-4.409

10. Berrar, D.: Cross-validation, Reference Module in Life Sciences, 2018.
DOI: 10.1016/B978-0-12-809633-8.20349-X

11. Fisher, R.: The Correlation Between Relatives on the Supposition of
Mendelian Inheritance, Philosophical Transactions of the Royal Society of
Edinburgh, 52, 399433 (1918).

The article has been sent 21.03.2021

ISSN 2663-5712 116 www.sworldjournal.com





