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Our term structure corresponds to calibration dates from Table 1 and Table 2. 
Table 1  

Cross validation dataset 
Calibration 
Dates 

01/03/
2020     

01/10/
2020     

 01/24/
2020     

01/31/
2020     

02/07/
2020 

  

Validation 
dates 
(OOS) 

  01/17/
2020     

   02/14/
2020 

02/21/
2020    

Spot MSFT 158.62
00   

161.34
00   

167.10
00   

165.04
00   

170.23
00   

183.89
00   

185.35
00   

178.59
00   

 
Calibration 
Dates 

02/28/
2020     

03/06/
2020     

 03/20/
2020     

03/27/
2020     

04/03/
2020 

  

Validation 
dates 
(OOS) 

  03/13/
2020     

   04/09/
2020   

04/17/
2020 

Spot MSFT 162.01
00   

161.57
00   

158.83
00   

137.35
00   

149.70
00   

153.83
00   

165.14
00 

178.60
00 

 
Table 2  

Predictive validation dataset 
Calibration 
Dates 

01/03/
2020     

01/10/
2020     

01/17/
2020     

01/24/
2020     

01/31/
2020     

02/07/
2020 

02/14/
2020 

02/21/
2020    

Validation 
dates 
(OOS) 

        

Spot MSFT 158.62
00   

161.34
00   

167.10
00   

165.04
00   

170.23
00   

183.89
00   

185.35
00   

178.59
00   

 

Calibration 
Dates 

02/28/
2020     

03/06/
2020     

      

Validation 
dates 
(OOS) 

  03/13/
2020     

03/20/
2020     

03/27/
2020     

04/03/
2020 

04/09/
2020   

04/17/
2020 

Spot MSFT 162.01
00   

161.57
00   

158.83
00   

137.35
00   

149.70
00   

153.83
00   

165.14
00 

178.60
00 

 
Our further modeling is inspired by the research conducted by Christensen who 

finds that implied volatility is better predictor of realized volatility than past realized 
volatility [6]. In this article we want to study only the term structure of ATM local 
volatility before making any predictions of realized one. 
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For each maturity we use such indicators as r-squared, t and F-statistics, and out-
of-sample MSE [8] (mean squared error) (5) to evaluate the quality of regression 
model (Tables 3, 4, 5, 6). Durbin-Watson test is conducted to determine the presence 
of autocorrelation (may be caused by overlapping) in our data [9]. 

                       (5) 

We validate simple linear and polynomial models on two different sets of 
calibration/validation dates. Cross validation [10] shows if the model can successfully 
predict ATM local volatility in intermediary OOS dates (Table 1) while predictive 
validation uses extrapolated OOS calibration dates (Table 2).  

We do two runs on each set (basically recalibrating local volatility twice) in 
order to reflect on ill-posedness of Dupire optimization problem [3]: no unique 
solution exists. So two runs allow us to use two different inputs (local volatility 
matrices) to regression model and potentially obtain different results. 

We use MSE and analysis of plots to measure the quality of predictions and 
validate obtained results. Finally we try to make some conclusions on validity and 
predictive ability of such models.  

Numerical results 
ANOVA (analysis of variance) [11] is conducted to verify the assumptions 

necessary to use the linear regression. 
On Fig.2 we can see that residuals seem to be normally distributed for cross-

validation and prediction sets so the assumption to use the linear regression are held. 
Let’s take a look at numerical results obtained for the first dataset.  
For cross validation set Fig.3 and Fig.4 illustrate the dynamics of calibrated 

ATM local volatility for the maturities  T=0.05 and T=0.4 respectively; as well as the 
regression plots (modeled local volatility) that we have built (1st and 3rd order).  

For the second (predictive validation) set we ilustrate the same data on Fig.5 and 
Fig.6.  

Subplots illustrate the dymamics of underlying MSFT stock price whose peaks 
correspond to volatility peaks as we can see. We won’t focus on this relationship as 
it’s in the definition of Dupire model that local volatility is a function of underlying 
asset price. 

Table 3 illustrates the statistics of the 1st order regression model for two different 
calibration runs (different ATM local volatility as input) for both cross-validation and 
predictive sets. 

Table 4 illustrates the statistics of the 3rd order regression model for two 
different calibration runs (different ATM local volatility as input) for both cross-
validation and predictive sets. 

Graphical analysis 
As we see on the Fig.3 and Fig.4, using 3rd order linear regression does improve 

the fit.  However on Fig.5, 6 we also observe that for predictive dataset it also shows 
very bad results on OOS validation points (huge prediction error). 

Form Fig.3, 4 we observe apparent correlation between stock price jumps and 
local volatility jumps. By definition of Dupire’s model local volatility is a function of 
the stock price so it’s not surprising. 
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Table 3 
Stat 1st order linear regression, Cross-Validation and Predictive sets 

CROSS_VALIDATION SET 
RUN 1 
T Rsq  tStat pValue Fstat pValue DW pValue MSE 
0,05 0.0722     0.78892       0.4529 0.622 0.453 2.7711 0.5066 1.1020     
0,1 0.0427     0.5971     0.56695 0.357 0.567 2.7921 0.4803 0.8701     
0,15 0.0267     0.46843     0.65198 0.219 0.652 2.7533 0.5294 0.7043     
0,2 0.0169     0.3703      0.72077 0.137 0.721 2.6899 0.6133 0.5779     
0,25 0.0137     0.33354       0.7473 0.111 0.747 2.6127 0.7205 0.4858     
0,4 0.0245 0.44856      0.66565 0.201 0.666 2.4207 0.9995 0.3588 
RUN 2 
T Rsq  tStat pValue Fstat pValue DW pValue MSE 
0,05 0.0029     0.15303      0.88217 0.0234 0.882 2.7245 0.5670 0.7920    

0,1 0.0029     -0.075008      0.94205 0.00563 0.942 2.7164 0.5778 10.9879    

0,15 0.0027     -0.14757      -0.14757      0.0218 0.886 2.5704 0.7809 0.0565     
0,2 0.0035     -0.16741      -0.16741       0.028 0.871 2.4130 0.9894 1.3127     
0,25 0.0014     -0.10563      0.91847 0.0112 0.918 2.2683 0.7811 5.4034    
0,4 0.0282 0.48174      0.64289 0.232 0.643 1.7931 0.2489 0.0615 
PREDICTIVE SET 
RUN 1 
T Rsq  tStat pValue Fstat pValue DW pValue MSE 
0,05 0,0665 0,7550 0,4718 0,57 0,472 2,1683 0,6536 1.62185 
0,1 0,0246 0,44937 0,6650 0,202 0,665 1,8612 0,3129 1.77455 
0,15 0,00771 0,2493 0,8094 0,0622 0,809 1,76 0,2312 1.597367 
0,2 0,00289 0,1522 0,88276 0,232 0,883 1,7166 0,2005 1.010617 
0,25 0,00175 0,1185 0,9085 0,014 0,909 1,6910 0,1839 0.7554 
0,4 0,00901 0,26973 0,7941 0,0728 0,794 1,4869 0,0835 0.591483 
RUN 2 
T Rsq  tStat pValue Fstat pValue DW pValue MSE 
0,05 0.2387     1.5838       0.1519 2.51 0.152 2.2346 0.7426 0.3800 
0,1 0.0700     0.77576      0.46021 0.602 0.46 2.2862 0.8146 0.3609 
0,15 0.0013     0.10064      0.92231 0.0101 0.922 2.1830 0.6730 0.4178 
0,2 0.0107     -0.29444      0.77592 0.0867 0.776 2.1200 0.5917 0.5505 
0,25 0.0296     -0.49384     0.63469 0.244 0.635 2.0818 0.5448 0.6236 
0,4 0.0441 -0.60744        0.5604 0.369 0.56 2.1609 0.6439 0.5586 
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Table 4 
Stat 3rd order linear regression, Cross-Validation and Predictive sets 
CROSS_VALIDATION SET 
RUN 1 

T Rsq  Fstat pValu
e DW pValue MSE 

0,05 0.3466     1.06 0.433 3.3249 0.2643 2.2290     
0,1 0.2532     0.678 0.597 3.1504 0.5084 1.6553     
0,15 0.1980     0.494 0.7 3.0213 0.7299 1.2441     
0,2 0.1698     0.409 0.752 2.9279 0.8984 0.9266     
0,25 0.1646     0.394 0.762 2.8588 0.9765 0.6804     
0,4 0.2150 0.548 0.668 2.7809 0.8385 0.3412 
RUN 2 

T Rsq  Fstat pValu
e DW pValue MSE 

0,05 0.1451     0.339 0.798 3.0525 0.5670 1.0515    
0,1 0.2543     0.682 0.682 3.3958 0.1882 11.4535     
0,15 0.3394     1.03 0.445 3.5080 0.0953 0.1000     
0,2 0.3967     1.31 0.354 3.5053 0.0971 1.0687     
0,25 0.4308     1.51 0.304 3.4415 0.1463 3.3493     
0,4 0.5279 2.24 0.185  3.0253 0.7228 0.0480 
PREDICTIVE SET 
RUN 1 

T Rsq  Fstat pValu
e DW pValue MSE 

0,05 0,101 0,225 0,876 2,2940 0,2854 1.447833 
0,1 0,0758 0,164 0,917 1,9728 0,0720 0.914233 
0,15 0,0801 0,174 0,91 1,86 0,0380 1.156333 
0,2 0,0986 0,219 0,881 1,8387 0,0314 0.930917 
0,25 0,113 0,254 0,856 1,8260 0,0287 0.753033 
0,4 0,192 0,476 0,71 1,7416 0,0146 0.487983 
RUN 2 

T Rsq  Fstat pValu
e DW pValue MSE 

0,05 0.3741     1.2 0.388 2.6956 0.7426 2.6968     
0,1 0.4477     1.62 0.281 3.1316 0.4939 4.2388     
0,15 0.4814     1.86 0.238 2.9443 0.7971 5.5686     
0,2 0.4887     1.91 0.229 2.6847 0.7713 6.6982     
0,25 0.4928     1.94 0.224 2.5788 0.6151 7.6306     
0,4 0.5155 2.13 0.198 2.9325 0.8170 7.2618 
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ANOVA graphs on Fig.2 demonstrate that the assumptions are held and 
residuals seem to be normally distributed so linear regression can be used to model 
the relationship. 

Let’s now analyze R-squared 
In terms of r-squared we can state form Tables 3, 4 that 1st order regression has 

very low fit and is unable to fit well the data. We can justify it by volatile character of 
the data as we studies crisis period from January 2020 to April 2020. 

However the 3rd order regression fits the data much better in terms of r-squared 
for both datasets. Volatile character of the data in the crisis period justifies using 3rd 
order model to fit the data. 

Good fit does not imply good predictive ability so we study regression statistics 
to see the significance of such model. We also validate it on OOS data points. 

Let’s now analyze T-statistics 
Null hypothesis designs the absence of linear relationship between calibration 

dates and local volatility.  
pValue is a probability to observe T-statistics as extreme or more extreme than 

the one under null hypothesis which is equivalent to approval of null hypothesis. So 
lower pValue means that there are more chances to reject null hypothesis and more 
chances that there is a linear relationship between the independent and the dependent 
variable. 

We reject null hypothesis if pValue is lower than significance level we choose 
(5% in our case).  

Looking at Table 3 we state with 95% probability that calibration date has no 
linear relationship with local volatility so it does not make sense to include it into the 
model for given sample. It is the case for all maturities for both runs for both datasets. 
The calibration date is not a significant predictor for local volatility in 1st order linear 
model. 

Let’s analyze F-statistics  
F-statistics shows whereas the whole model is better than intercept-only model 

(simple mean). Let’s take a look at F-statistics in the Table 3 and Table 4. Choosing 
5% significance level we can conclude that neither 1st nor 3rd order linear regression 
model can outperform simple mean. So both of them are overall insignificants. It 
holds for both datasets. 

Let’s analyze auto-correlation Durbin-Watson criteria: 
Null hypothesis is absence of autocorrelation between residuals.  
Significantly low pValue means that we can reject null hypothesis and state 

autocorrelation. We use level of significance at 5%. 
Looking at Table 3 we state that pValue is quite large for all maturities. So we 

conclude that no autocorrelation is present for 1st order regressions for cross-
validation dataset. 

Looking at Table 4 we state that pValue is quite large for all maturities. For the 
RUN1 in Predictive dataset however we have lower pValues that can pass the level of 
significance of 5% for 3rd order model. So we conclude that there can be an 
autocorrelation of residuals for 3rd order model for some runs. However as the whole 
model is not efficient nor significant we are not interested in getting rid of this 
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phenomena. 
We could also suggest that there is no autocorrelation in general case as the data 

has quite little or no overlapping nature as for calibration we used MSFT options with 
quite short maturities. 

Out-of-the-sample MSE analysis 
We can also see it in MSE measure on out-of-the-sample points:  
In Table 3 we observe that for 1st order regression models out-of-sample MSE is 

quite far from 0 which means we cannot use these models to predict local volatility at 
validation dates. This holds for both datasets. 

In Table 4 we also observe that for 3rd order regression models out-of-sample 
MSE is quite far from 0 which means we cannot use these models to predict local 
volatility at validation dates. This holds also for both datasets. 

Conclusions 
In current work we calibrated local volatility from two different datasets and two 

different runs. Therefore we could perfectly observe the multiplicity of solutions of 
Dupire calibration problem implied by ill-posedness of the problem. We observe this 
multiplicity rather than try to eliminate it. 

Firstly by conducting graphical analysis we observe that for both runs and both 
datasets there is an apparent correlation between stock price jumps and local 
volatility jumps. It’s normal as functional relation is implied by Dupire’s model. 

Secondly by analyzing ANOVA graphs we can state that the assumptions are 
held and residuals seem to be normally distributed so linear regression can be used to  
model the time-series of local volatility. 

Thirdly we conclude that 3rd order regression model fits the data much better in 
terms or r-squared than 1st order one. Volatile character of the data in the crisis period 
justifies using 3rd order model to fit the data. 

Fourthly by analyzing t- and F-statistics for both 1st and 3rd regression models 
we conclude that calibration date has no linear relationship with local volatility so it 
does not make sense to include it as factor into the model. Both models are overall 
insignificant.  

Fifthly we analyze autocorrelation of residuals for both models using Durbin-
Watson test. We conclude that in general there is no autocorrelation despite it is 
present in some runs for some maturities. The absence of autocorrelation can be 
explained by little or no overlapping nature of observations as we use quite short 
maturities.  

Finally despite statistical insignificance of our regression models we study their 
predictive ability by analyzing MSE measure on out-of-sample data points. For both 
models and datasets we conclude that we cannot use calibration date as predictor for 
local volatility. We will lean on this conclusion in our further research to exclude 
calibration date from the list of volatility predictors. 
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