
SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 11

https://www.sworldjournal.com/index.php/swj/article/view/swj09-01-009
DOI: 10.30888/2663-5712.2021-09-01-009

УДК 62.932:007.52
AUTOMATION OF FLEXIBLE HMI INTERFACE DEVELOPMENT FOR

CYBER-PHYSICAL PRODUCTION SYSTEMS
Igor Nevliudov

EngD, Professor
ORCID: https://orcid.org/0000-0002-9837-2309

Vladyslav Yevsieiev
EngD, Professor

ORCID: https://orcid.org/0000-0002-2590-7085
Nikolaj Starodubcev

P.Hd., Asistant Professor
ORCID: https://orcid.org/0000-0001-7856-5771

Nataliia Demska
P.Hd., Asistant Professor

ORCID: https://orcid.org/0000-0002-9931-9964
Kharkiv National University of Radioelectronics, Kharkiv, Nauky Ave. 14, 61166

Abstract. This publication is devoted to solving the problem of automation of flexible HMI

interface development for monitoring and control of technological processes in cyber - physical
production systems used in Smart Manufacturing within the Industry 4.0 concepts. The peculiarity
of such systems is the great flexibility in use and upgrades, the minimum time of reconfiguration
and implementation in the production process. As a result, there are questions about the
implementation of adequate and modern HMI interface of the production process operator in real
time, for timely analysis and decision making. Modern control systems for automated lines have a
precise nature, each workbench has its own "control system", which is offered by the manufacturer,
all these "control systems" are combined using the Industrial Internet of Things. However, such
solutions are outdated, currently the one relevant is a single control system for a production line,
shop, enterprise, corporation, which has a flexible interface that can be configured in a minimum of
time, without the involvement of software developers. This is possible if the development of the HMI
interface will be implemented on new approaches in the form of a specialized language based on
natural language, which will reduce the time of development and implementation of additive cyber
design.

Keywords: Industry 4.0; Industrial Internet of Things, Smart Manufacturing, Cyber-Physical
Production Systems, Human Machine Interface, Graphical User Interface.

Introduction
Global competition in the production of high-tech products is characterized by

shortening life cycles (LC), complicating technical and technological preparation of
production (TPP) and increasing requirements for their control and monitoring in real
time [1-2]. Requirements for achieving high quality of such products require constant
improvement of technological processes (TP), as well as changes in the structure of
their management, which are central factors of success for manufacturing companies.
With the development of Industrial Internet of Things (IIoT) and Industry 4.0, the
introduction of Cyber-Physical Production Systems (CPPS), within the concepts of
Smart Manufacturung, is becoming more widely used [3-5]. In turn, the digitization
of production processes and management processes requires the processing and
manipulation of large amounts of heterogeneous industrial data in real time and
throughout the product life cycle. To use industrial data, to gain a competitive

https://orcid.org/0000-0002-2590-7085
https://orcid.org/0000-0001-7856-5771
https://orcid.org/0000-0002-9931-9964

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 12

advantage, it is necessary to provide flexible, educatable, Lean Production (LP),
which must be human-centered [6].

But, despite the rapid development of research data, the development and
implementation of CPPS still remains an individual task for each enterprise, and, as a
result, there is no single approach to the management of organizational and technical
production facilities.

To solve this problem, based on the proposed architectural and logical model of
process control in complex organizational and technical production facilities and
methods of its decomposition, the control process technology is developed [7]. On its
basis the description system models that allow the developer to receive algorithms of
functioning of organizational and technical production objects, both as a whole and at
each stage are offered.

The Jump LC model is proposed and formalized, based on the synthesis of
visual components and formal representation of properties and events, which allows
to automate the development of additive cyber-design, based on the use of "solution
containers" and "linguistic variables" [8].

It should be noted that the proposed decision difficult to understand users and is
a mathematical core, for which it is necessary to develop formal language describing
the structure and parameters of the developed additive cyber design that is as close
and intuitive to some subset of natural language and applicable in a given subject
matter area (SMA).

On the one hand, it was found that developers of additive cyber-design CPPS
use binding to user interface elements and minimize the use of software code. This
code, in most cases, is a handler of an event initiated by the user or internal processes,
interacting with the necessary visual elements to solve a problem.

On the other hand - users who are specialists in SMA, can formulate a
semantically correct structure and internal hierarchy of all interface elements with the
necessary values of parameters and events that must be implemented to solve the
tasks in the TOR.

There is a need to develop a syntactic and semantic model of a new formal
language, building a clear and simple (for professionals and developers) additive
cyber-design, close to some subset of natural language. This will help solve the
problem of automatic transformation of semantic rules to describe the process of
developing the HMI interface CPPS in a syntactically and terminologically correct
structure, to implement its compilation in the required development environment.

1. Development of language model specification
Define the concept of language model (LM) - a declarative (non-procedural)

language, the purpose of which is to define and describe the terminology, which is
based on the proposed and the relationship between metadata and data of the subject
area, as well as ways to transform them.

This paper proposes the following specification of the language of data models:
– alphanumeric characters are allowed, which are supported by high-level

programming language development environments and correspond to the ASCII code
table: + - \ . , ! “ < > = () $ % & ~ * _ & @ space; { };

– keywords: basic concept in the form of words reserved in the developed

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 13

mathematical model (MM), which are used to describe key features such as:
Form – some selected and uniquely identified part of the subject area. Its

purpose is to describe and present the visual structure of additive cyber design in the
form of basic blocks;

masterForm – main form for describing and presenting the visual structure of
additive cyber design;

slaveForm – an auxiliary form for presenting or entering visual information that is
called from the main form;

ormParameterF – a set of types and methods of describing the properties of the
subject area, selected and grouped by certain characteristics, as well as identified by
name. Purpose - a description of the parameters necessary and sufficient to display
and model a visual representation of Form (masterForm , slaveForm);

mElementFor – an element or group of GUI elements (subclass of an object) to
visually represent the interaction between the user and the simulated functionality of
the additive cyber design. They contain the necessary features for the implementation
of the user interface, or management and interaction with information flows and data;

EvenForm – event or group of events (action) that may occur (have already
occurred, or will occur) with the subject area, at a certain point or time interval.
Identified by time (necessity) and the object to which the event belongs. With one
object, at one time, only one event can occur, which is pre-initialized by the user;

ementParametrEl – types and methods of describing the properties of elements,
both individual and grouped by certain characteristics and identified by name.
Purpose - a description of the parameters necessary and sufficient for the presentation
and modeling of the visual representation of the element, within a single information
object;

ntEventEleme – an event, group of events, or condition that may occur (has
already occurred or will occur) with a GUI that performs a specific function at a
specific point or time interval. Identified by time (necessity) and the element to which
the event belongs. Only one user-initiated event can occur with one object at a time.
Purpose - one of the main properties of the element, which is limited: the
functionality of this GUI element, scope (in terms of the need to use in this model of
additive cyber-design CPPS), the need and role in the overall concept of application
in the user interface for testing information flows;

ntValueEleme – value assigned to the type and method of describing the
properties of the GUI element. Purpose - assignment of a specific value (integer,
linguistic, Boolean) type, or method of describing the parameters, depending on the
functional features and implementation of the visual intuitive interface of each part of
the subject area in accordance with the algorithm. For some ParameterForm and
ParameterElement in their functional purpose and nominal identification, the values
may be the same, depending on the requirements of CPPS;

ariableLingusticV – named (in the natural language of the system) logical
description of actions in the event of events. Such descriptions can be grouped by a
number of features. Purpose - assignment of an event class or a single event to a
linguistically intuitive user-friendly model of the variable description of reactions in

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 14

the event of an event;
olutionContainerS – named description of reactions, when an event or group of

events occurs, at a certain point in time on an element (group of elements), or subject
area. Is rigidly structured, depending on the high-level programming language and
development environment that is needed to achieve the development goal.
Application - a partial or complete solution to perform the necessary actions with the
data (information flows) necessary to achieve the goal of development, provided that
the main goal of the development of additive cyber-design or at certain levels of
decomposition;

parameter – the name of the parameter that describes or characterizes Form or
the GUI element;

value – the value of the parameter, which can have both a digital value and a
registered special word in the development environment;

name – olutionContainerS name, which is clear to the end user;
event – the name of the event that is possible on Form or the GUI element;
cod – part or fragment of program code that solves a problem and is stored in

olutionContainerS .
 identifiers used to denote such features:

• an indication that parameters and events belong to domain or non-domain types:
domen , not_domen . Domains of the corresponding characteristics (values)
belonging to the listed (accounting) type which has a possibility of a choice from
in advance formed list. An example is some ormParameterF parameters of Form
display, which can take on values true or false . For example, the Align
parameter, that is inherent in the)(с_

z
писокpparameterdom and

)(с_
h

писокpparameterdom , can take the values fixed by the CPPS development
environment and specified in the TOR;

• data type values (value), which determines the characteristics of the parameters
ormParameterF and ementParametrEl (text, boolean, integer, integer negative,

text, phrase);
• linguistic description of the reference feature ariableLingusticV (name) on

olutionContainerS , which contains the required cod ;
• basic concepts of the Jump LC model, which make it possible to link events

mElementFor and ntEventEleme , contain a set of certain event , belonging to a
certain visual graphic element with olutionContainerS (cod) through

ariableLingusticV (name).
As you can see, unlike keywords, the proposed identifiers can theoretically be

redefined, but this leads to errors, so the above identifiers are included in a fixed
dictionary of keywords.

 literals, a set of values that are not represented by an identifier.
String literals are represented as a sequence of allowed characters with different

spellings (uppercase and lowercase) letters. For example, name_form, which is used
in the parameters Caption , Name etc., as well as assigning a unique name (name)

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 15

for each ariableLingusticV , which contains a certain piece of program code. For
example, "save in the database", "calculate the result", etc., which are set by the end
user for the convenience of the methodology being developed.

Algebraic letters – letters that are a description of simple logical operations of
the type True, False, which allow to set values (value) of a parameter (parameter),
belonging to ParameterElement, ParameterForm and is necessary and sufficient to
describe the properties of the visual elements of the CPPS, or the function of the
Collaborative Manufacturing Execution System (c-MES), in accordance with the
necessary requirements.

Reserved letters are a word, phrase or abbreviation that allows you to select a
property of the parameter required to achieve the conditions specified in the
algorithm. An example is the WindowsState form property in the RadStudioXE16
development environment, to which you can select reserved abbreviations:

zed, wsMaximisMinimizedwsNormal,w . That is, on first launch, the developer can
specify the type of form display. wsNormal – default display, in the form in which it
was created at the design stage, dwsMinimize – the form that is displayed in a
minimized form on the taskbar, dwsMaximize – when launched, the form expands to
the full size of the desktop.

Reserved letters can be common to ormParameterF and ementParametrEl , as
well as specialized, ie belong to a certain visual form, which determines the specifics
of an element. However, it should be noted that the reserved letters to determine the
values of a parameter of visual components that have the same purpose, can perform
different specified functions and handle events in the same development
environment.

Types of values presented, which contain some parameters of ormParameterF
and ementParametrEl , permissible in the field of application:

Integer data type (integer) – allows you to assign a parameter ormParameterF
and/or ementParametrEl a certain and necessary digital value of the dimension or
coordinates of the location of the visual element relative to Form . Used mainly to
describe visual graphic elements. It is the smallest logical element of a two-
dimensional digital image in raster graphics (pixel). The length of the line depends on
the screen resolution and the TOR requirements put forward by the customer to the
developer.

Integer negative – allows you to assign a parameter a certain value that is within
the range (,...,n,,,- 3211), which belongs exclusively to ementParametrEl and
describes the numbering in this context:

1− – numbering is missing, the parameter is not involved;
,...,n,, 321 – numbering of the graphic image (icon) which belongs to a certain

parameter (parameter) for mElementFor .
Textual / linguistic (char) – allows you to assign to the parameter a logical order

of the values of the characters that contain the necessary user explanations or the
name of the graphical elements required for ease of use with CPPS. Also, this type of
value representation is used to specify a specific name ariableLingusticV , assigned to
the event EvenForm , ntEventEleme .

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 16

Logical (boolean) – can only take two values: true or false and acts as a switch
to use a parameter in ormParameterF and ementParametrEl .

Text phrase (enumerated type) – the type of data specified by the list in the form
of a domain, which allows you to specify a list of reserved words in the development
environment or abbreviations that can take one or another parameter for

ormParameterF and ementParametrEl .
Dividers – symbolic designations of allocation of the basic elements of a

syntactic construction developed LМ.
< Form> (angle brackets Form) – are used to identify a keyword that indicates

the beginning of a meta description of a particular Form in the design of LM.
</ Form> (slash angle brackets Form) – is used to identify a keyword that

indicates the completion of a meta description of a particular Form in the design of
LM.

For the proposed keyword design, at the beginning and end of the meta
description of Form the following restrictions are imposed: Form name can contain
numbers like 1Form , or a letter definition, for example, rForm_maste or

peratForm_add_o . In this case, the keyword of the beginning of the meta
description must coincide with the keyword of the end of the meta description of a
particular Form in the design of LM. If this design requirement is not met, the MM
interpreter will not be able to perceive the content as a meta-description of all the
necessary parameters and events inherent in the Form .

{ (opening bracket) – mandatory meta description at the beginning of the meta
description line Form and mElementFor .

} (closing brackets) – mandatory meta description completion character Form
and mElementFor .

(hash sign) – after this symbol, the design of the LM interpreter perceives the
beginning of the description of the graphical visual elements of the user interface
(mElementFor).

/# (slash hash sign) – after this combination of characters, the interpreter MM
believes that the description of the graphical visual elements of the user interface
(mElementFor) is completed.

/ (slash) – used to define hierarchies of meta-descriptions of visual graphic
elements (mElementFor), according to the tree of construction of additive cyber
design and is applied inside # /# meta description of Form .

2/1 mElementFormElementFor – must be understood as 2mElementFor , that is
inside 1mElementFor and is an integral part of it.

[] square brackets – used to meta-describe the required parameters and events
ormParameterF , EvenForm , ementParametrEl , ntEventEleme .

; (semicolon) – mandatory LM construction symbol, which indicates that the
assignment to this parameter or event corresponding value and name completed,
applied internally.

, , (listing through a comma) – used to list parameter names for
ormParameterF , ementParametrEl , and also event for EvenForm , ntEventEleme

provided for a set of several parameter or event corresponding values value and

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 17

name are the same, applied internally.
= (equal sign) – assigns parameter a certain value value and is used to

determine event certain name with ariableLingusticV , which contains a link to cod
or its fragment in olutionContainerS . It should be noted that depending on the
context (logic and content of the performed actions), this sign can be interpreted as an
instruction of assignment, according to which for the specified basic parameter the
value which belongs to it is defined.

Comments – all characters and strings written inside this construct by the LM
interpreter are ignored and perceived as comments. Alphanumeric characters of
national alphabets are allowed, supported by the operating system and development
environment. The limitation for comments is that the sequence should not exceed 255
characters.

?** (question mark with two asterisks) – indicates that the specified characters
will be followed by a comment that is ignored by the LM interpreter.

**? (two asterisks and a question mark) – shows that after the specified
characters the comment ends and the text which is not ignored by the LM interpreter
goes further.

To adapt the developed syntax of the description of LM, it is proposed to use the
Bekus-Naur form. The rationale for this choice is that the extended Becus-Naur form
is used to describe context-free grammars [9] and simplifies and reduces the scope of
the description. The extended Becus-Naur form is described in the international
standard [10]. The analysis of which showed that this form makes it possible to
develop an intuitively simple and adaptive formal language for presenting and
describing the necessary data for the development of CPPS, based on approaches to
object-oriented programming.

Based on the above specification, the language of the data models and the basic
concept of the Jump LC model, the following syntactic diagram of LM additive
cyber-design is proposed. (fig. 1).

The syntactic diagram proposed in this study of the types of representation of
values that may belong to the identifiers is presented in figure 2.

As you can see from Figure 2, the Parameter identifier, Event refers to domen
(list) type and is represented as a text word or abbreviation related to

orm_nameParameterF and nameEvenForm_ , and lementParameterE and
tEvenElemen , according to figure 1.

List of parameters (parameter) and events (vente), belonging to
orm_nameParameterF , nameEvenForm_ , within a single development

environment, is constant and unchanging. For a list of parameters (parameter) and
events (vente), belonging to ementParametrEl , ntEventEleme in accordance, the
same limitation is that these visual graphic elements have the same purpose within
the same development environment. It is worth noting that this type belongs to value
for ementParametrEl and orm_nameParameterF , which contain a text word or
abbreviation reserved by the development environment.

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 18

Fig. 1. Syntactic diagram of the modeling language

Fig. 2. Syntactic diagram of types of representation of values of identifiers

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 19

Identifiers value and name belong to not_domen (not accounting) type. This is
justified by the fact that the value value can be set by the developer depending on the
requirements of TOR for additive cyber design. For the name identifier, which is
included in ariableLingusticV , the name that refers to olutionContainerS , contains
the required fragment or part of the program code (cod). It is set by the user, taking
into account its logical advantages and ease of use.

For the convenience of reading and presentation of the developed declarative
language (Fig. 1-2) it is necessary that it has the quality of comprehension and
reading. This can be achieved using at least three principles of language
representation [11], namely:

– be as linear as possible;
– be brief;
– be self-documented.
Based on the proposed assumptions and recommendations, the following type of

LM recording style is proposed for the developed CPPS declarative language, which
allows to simplify and standardize the code..

Example 1

>< masterForm _
{ ?** opening a block describing parameters and values, as well as events and
names ariableLingusticV для masterForm _ **?

[valueparameterparametervalueparameter == 3,2;1]
[nameeventnameevent == 2;1]

} ?** closing the block describing parameters and values, as well as events and
names ariableLingusticV для masterForm _ **?
“ the name of the item in the development environment”
?** opening the block of description of visual graphic elements rForm_maste **?

{ ?** block of er_Form_mastElement1 description **?
[valueparameterparametervalueparameter == 3,2;1]
[nameeventnameevent == 2;1]

} ?** closing the block of er_Form_mastElement1 description **?
{ ?** block of er_Form_mastElement2 description **?

[valueparameterparametervalueparameter == 3,2;1]
[nameeventnameevent == 2;1]

} ?** closing the block of er_Form_mastElement2 description **?
/# ?** closing the block of description of visual graphic elements of rForm_maste
**?

If necessary, implement a hierarchy (construction tree) of
2/1 mElementFormElementFor visual graphic elements the following fragment of the

meta-description structure is offered:

>< masterForm _/

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 20

Example 2.
“ the name of the item in the development environment” ?** opening the block of
description of rForm_maste visual graphic elements **?

{ ?** block of masterFormElement _1 description **?
[valueparameterparametervalueparameter == 3,2;1]
[nameeventnameevent == 2;1]

} ?** closing the block of masterFormElement _1 description **?
/ “ the name of the item in the development environment”
{ ?** block of masterFormElement _2 description **?

[valueparameterparametervalueparameter == 3,2;1]
[nameeventnameevent == 2;1]

} ?** closing the block of masterFormElement _2 description **?
/# ?** closing the block of description of rForm_maste visual graphic elements **?

Using “/” (slash) will allow the LM interpreter to determine the degree of

nesting (belonging) of the visual element in another, ie the ability to implement a
structure tree (Structure) of additive cyber-design in the development environment.
Figure 3 shows a graphical representation of the structure of the construction tree

masterForm _ construction tree of CPPS (example 1, and example 2, b).
To determine the appropriate value and name , in the examples above, in

ariableLingusticV for parameter and event accordingly, after (=) the value type is
set. In the absence of values, or the use of values reserved by the default development
environment, this parameter is not declared in the meta description (not indicated).

a) b)

a) masterFormElement _1 і masterFormElement _2 definitely belongs
rForm_maste ;

b) masterFormElement _2 belongs masterFormElement _1 ;
Fig. 3. Graphical representation of the CPPS structure tree

Example 3 shows a meta-description of creating a blank form in the

environment RadStudio XE6 for VLC Form Application.
Based on the meta-description given in (1), a graphical representation of the

simplest user form was generated (Fig. 4).
A fragment of the meta description of additional visual graphic elements of the

Standard-Button type (a custom button that performs a specific event) is presented in
(2).

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 21

Example 3
>< 1Form

{

]703503
6874641[

===
===

r,WidthForm_maste,NameHeight
,th,ClientWidght,ClientHeiexample Caption
 (1)

}
>< 1/ Form

Fig. 4. A fragment of the RadStudio XE6 development environment of the

simplest user form

“Buttion_close”

]91_
,560,40833[

==
====

hclose,WidtButtionName
Left,TophtClose,HeigCaption

 (2)

/#

Figure 5 shows an example implementation of a form with a Button element, the
meta-description of which is given in (1) and (2), respectively.

Fig. 5. A fragment of the development environment with the implementation of

the form and the graphic element Button

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 22

In addition to the implementation of the graphical visual interface shown in
fig. 4–5, based on meta-descriptions (1) - (2) the program code in Pascal language
was generated, presented in fig. 6.

Fig. 6. Program code in Pascal

Each element of the LM description given in the syntactic model (1) - (2) is

written according to the syntactic diagram (fig. 1) and the diagram of types of
representation of values of identifiers (fig. 2). The semantic model of LM is a system
of values attributed to constructions and developed syntactic LM (interpretations of
construction). This model is presented in the process of interpretation (analysis) of
the proposed rules of description and presentation of the LM specification, symbols
and their combinations.

Consider the meta-description of example (2), to determine the need to
implement the attachments (accessories) of one visual element in another, as shown
in figure 3, b. According to the proposed syntactic model (fig. 1), the meta-
description will take the following form:

“GrupBox1”

]6781,4
,2721861[

===
===

,WidthGroupBoxNameLeft
,Top,HeightGroupBoxCaption

/ “Buttion1” (3)

]861
,585,14632[

==
====

,WidthButtionName
Left,TophtClose,HeigCaption

/#

In the development environment, this meta-description allows you to implement
the degree of nesting of visual graphic elements in each other and build a "tree"

1Form , based on which the user interface is developed, according to the TOR on
CPPS and algorithm of functioning. Figure 7 shows a fragment of the generated user
interface, according to the meta description (3) in the development environment
RadStudio XE6.

From the above fragments of meta-descriptions (1) - (3) and fig. 3 you can
specify any depth of embedding of graphical elements of the user interface. This

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 23

makes it possible to implement, using the proposed syntactic diagram of LM (fig. 1),
the structure of CPPS of any degree of complexity and thus simplify the process of
developing a visual component based on an object-oriented approach to
programming.

Fig. 7. Implementation of the interface 1Form

2. Development of syntax of meta description of events
Based on the proposed syntactic diagram presented in Figure 1, the following

meta-description of events (event) for Form and mElementFor is proposed. Based
on (1), we give an example of a simple meta-description of operation on an element
Buttion event Onclick , to practice ariableLingusticV with the name Close_All .

Example 4

>< 1Form
{

]703503
6874641[

===
===

r,WidthForm_maste,NameHeight
,th,ClientWidght,ClientHeiexample Caption
 (4)

]_,91_
,560,40833[

AllCloseOnClickhclose,WidtButtionName
Left,TophtClose,HeigCaption

===
====

}
>< 1/ Form

As can be seen from the meta description in example (4), the developer

describes the existence of an event on the element Buttion with the name
closeButtionName _= , ariableLingusticV under the name AllClose _ for the event

Onclick . This representation allows the developer to implement a model of the LC
process of managing the development of CPPS, which is presented in section 4 in the
form of a sequence of links:

codolutionContainerSariableLingusticVevent →→→ (5)

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 24

Based on the results of meta-description (4), the developer receives the
generated program code, shown in figure 8.

Fig. 8. The result of generating program code

Consider a fragment - an example of a meta-description of example (6)

implementation of a more complex code design, which was generated during the
development of "System of operational dispatching management of the production
enterprise" OSCEM "[12].

On 1Form there is an element operacDBGrid _ to display information from the
database (DB). In operace_DBGridРroperties _ the binding to the visual drop-down
element of the interface operacРopupMenu_ is specified. It is necessary to generate
the program code of removal from a DB of the selected record in operacDBGrid _ .

Example 5

>< 1Form

“DBGrid_operace”
{

]_
,_

,320,24,344,120
,__.1[

operacPopupMenuPopupMenu
operaceDBGridName

WidthTopLeftHeight
OperacNakIBDataSetFormDataSurce

=
=

====
=

}


“DBGrid_operace”
{

],28,_[== ItemsoperacPopupMenuName
]28[ClickNOnClick =

}

“N28”
{

]__[
]28,[

operaceselectDeleteOnClick
NameDeleteCaption

=
==

}


>< 1/ Form

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 25

An example of the generated program code to implement the event per element
operacPopupMenu _ , when pressed once, in the drop-down menu of options Delete

with internal indexing 28, the code selection from ariableLingusticV =
operaceselectDelete __ . An example of the generated program code after editing by

the developer is presented in fig. 9.

Fig. 9. A fragment of the code after editing by the developer

Based on the examples above, the developer gets the opportunity, based on the

proposed model and methods of CPPS development [7], as well as on the basis of the
developed model of LF [8], using meta-description to create and implement additive
cyber-design, with the possibility of "partial" generation of program code [13]. The
completeness of the generation of program code directly depends on the content of
DB "Container Solutions", which contains examples of events (cod) that can be
performed in the process of developing additive cyber-design. This solution allows
you to adapt the proposed meta-description to any object-oriented language, and also
allows the developer to expand the database with new "Container Solutions", which
will reduce time spent in the development of additive cyber design for process
management in complex organizational and technical production facilities.

Conclusions
The complexity of developing the cyber component of CPPS is a complex

scientific and applied task, due to the fact that the HMI setup must be carried out in
parallel with the installation and commissioning of production lines, so the
development of HMI control and monitoring system must be timely. software
development is not cost effective. This necessitated the development of a new
declarative language for the definition and manipulation of data, close to some subset
of natural language. Therefore, the authors of this article proposed such solutions:

1. The specification of language of data models (keywords, identifier, literals,
types of the presented values, etc.) is developed.

2. The syntactic diagram of the developed language which gives the chance to
describe parameters, properties, values, and also events inherent both WindowsForm
and GUI elements of HMI of the user interface of additive cyber-design is offered.

3. The syntactic diagram of types of representation of values of identifiers is
developed.

4. Based on the results of the consistency of the developed terminological basis
of syntactic constructions of LM and terms, an interpreter has been developed that is
able to automatically translate HMI compiled in terminology close to some subset
into a natural development command format and a high-level programming language.
The syntactic constructions of the developed language are a script sequence and are

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 26

quite simple to understand for both specialists and ordinary developers (examples 1-
5). This gives grounds to claim that the use of the proposed LM by the developers
makes it possible to reduce the development time of additive cyber-design process
control in complex organizational and technical production facilities based on CPPS.

REFERENCES:
1. Frank, A. G., Dalenogare, L. S., Ayala, N. F. (2019). Industry 4.0

technologies: Implementation patterns in manufacturing companies. International
Journal of Production Economics, Vol. 210(C), P. 15–26, DOI:10.1016/
j.ijpe.2019.01.004.

2. Haseeb, M., Hussain, H. I., Ślusarczyk, B., Jermsittiparsert, K. (2019).
Industry 4.0: A solution towards technology challenges of sustainable business
performance. Social Sciences, Vol. 8(5), P. 154, DOI:10.3390/ socsci8050154.

3. Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open
research issues. Journal of industrial information integration, Vol. 6, P. 1-10,
DOI:10.1016/j.jii.2017.04.005.

4. Haleem, A., & Javaid, M. (2019). Additive manufacturing applications in
industry 4.0: a review. Journal of Industrial Integration and Management, Vol. 4(04),
Р. 1930001, DOI:10.1142/S2424862219300011.

5. Yevsieiev V., Bronnikov A. Information systems development methodologies
application analysis for cyber-physical production systems development. III
International scientific-practical conference “Theory, science and practice” (Japan,
Tokyo, 5–8 October 2020). P. 398–401. DOI: 10.46299/ISG.2020.II.III.

6. Yevsieiev V., Bronnikov A. Analysis of the cyber-physical production
systems implementation impact to achieve the goals of lean production. The IIth
International scientific and practical conference «Development of scientific and
practical approaches in the era of globalization» (USA, Boston, 28–30 September.
2020). P.221–226. DOI:10.46299/ISG.2020.II.II.

7. Nevliudov, I., Yevsieiev, V., Maksymova, S., Filippenko, I. (2020),
"Development of an architectural-logical model to automate the management of the
process of creating complex cyber-physical industrial systems", Eastern-European
Journal of Enterprise Technologies, Vol. 4, No. 3 (106). P. 44–52. DOI:
10.15587/1729-4061.2020.210761

8. Nevlyudov I., Yevsieiev V., Miliutina S., Kollesnyk K. Object semantic
model for life cycle model “Jamp”. CAD in Machinery Design. Implementation and
Educational Issues. 25 Proceedings of Polish- Ukrainian Conference
(CADMD’2017). (Polish, Bielsko Biala, 20–21 October 2017). P. 31–32.

9. Plotnikova Z.V., Evseev V.V. (2009). Metod niskhodyashchego analiza s
prognoziruemym vyborom al'ternativ dlya konstekstno – zavisimykh gramatik.
Vostochno-evropeiskii zhurnal peredovykh tekhnologii. Vyp. 4/11(40). S.11–13.

10. The structure of the administration shell: trilateral perspective from France,
Italy and Germany. [Electronic resource]. URL:
https://www.de.digital/DIGITAL/Redaktion/EN/Publikation/the-structure-of-the-
administration-shell.pdf?__blob=publicationFile&v=3. (Date of application:
14.09.2021).

SWorldJournal Issue 9 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 27

11. V.A. Morozova, V.I. Pautov.(2017). Predstavlenie znanii v ekspertnykh
sistemakh. Ekaterenburg.Izd.-vo Ural. Un-ta.. S – 120. ISBN 978-5-7996-2037-0.

12. Nevliudov,I., Yevsieiev, V., Demska,N., Novoselov, S. Development of a
software module for operational dispatch control of production based on cyber-
physical control systems. Innovative Technologies and Scientific Solutions for
Industries. 2020. No.4(14), P.155–168. DOI:10.30837/ITSSI.2020.14.155.

13. Nevliudov I., Yevsieiev V., J. H. Baker, Ahmad M. A., Lyashenko V.
(2021). Development of a cyber design modeling declarative language for cyber
physical production systems. Journal of Mathematical and Computational Science.
No.1. P.520–542, DOI:10.28919/jmcs/5152.

Анотація. Дана публікація присвячена вирішенню питання автоматизації розробки

гнучкого HMI інтерфейсу для моніторингу та керування технологічними процесами в кібер-
фізичних виробничих системах, які використовуються в Smart Manufacturing, в рамках
концепції Industry 4.0. Особливістю таких систем є велика гнучкість при використанні та
модернізації, мінімальний час переналадки та впровадження у процес виробництва. Тому
виникають питання реалізації адекватних та сучасних HMI інтерфейсів оператора
виробничого процесу, в режими реального часу, для своєчасного аналізу та прийняття
рішень. Сучасні системи керування автоматизованими лініями мають індивідуальний
характер, на кожному верстаті є своя «система керування», запропонована виробником, всі
ці «системи керування» об’єднуються за допомогою Industrial Internet of Things. Однак, такі
рішення є застарілими. На даний час актуальним є рішення створення єдиної системи
керування виробничою лінією, цехом, підприємством, корпорацією, яка має гнучкий
інтерфейс, що легко налаштовується в мінімальний час без залучення розробників
програмного забезпечення. Це можливо, якщо розробка HMI інтерфейсу, буде реалізоване на
нових підходах у вигляді спеціалізованої мові, на базі природної мови, що дозволить
скоротити час розробки та впровадження адитивного кібер-дизайну.

Keywords: Індустрія 4.0; Промисловий Інтернет Речей, Розумне Виробництво, Кібер-
Фізичні Виробничі Системи, Людино-Машинний Інтерфейс, Графічний Інтерфейс
Користувача.

Article sent: 16.09.2021 г.

© Yevsieiev V.

