SWorldJournal Issue 9 /@art 1 |

epR
42

https://www.sworldjournal.com/index.php/swj/article/view/swj09-01-009

DOI: 10.30888/2663-5712.2021-09-01-009

YK 62.932:007.52
AUTOMATION OF FLEXIBLE HMI INTERFACE DEVELOPMENT FOR
CYBER-PHYSICAL PRODUCTION SYSTEMS

Igor Nevliudov

EngD, Professor

ORCID: https://orcid.org/0000-0002-9837-2309
Vladyslav Yevsieiev

EngD, Professor

ORCID: https://orcid.org/0000-0002-2590-7085
Nikolaj Starodubcev

P.Hd., Asistant Professor

ORCID: https://orcid.org/0000-0001-7856-5771
Nataliia Demska

P.Hd., Asistant Professor

ORCID: https://orcid.org/0000-0002-9931-9964
Kharkiv National University of Radioelectronics, Kharkiv, Nauky Ave. 14, 61166

Abstract. This publication is devoted to solving the problem of automation of flexible HMI
interface development for monitoring and control of technological processes in cyber - physical
production systems used in Smart Manufacturing within the Industry 4.0 concepts. The peculiarity
of such systems is the great flexibility in use and upgrades, the minimum time of reconfiguration
and implementation in the production process. As a result, there are questions about the
implementation of adequate and modern HMI interface of the production process operator in real
time, for timely analysis and decision making. Modern control systems for automated lines have a
precise nature, each workbench has its own "control system", which is offered by the manufacturer,
all these "control systems" are combined using the Industrial Internet of Things. However, such
solutions are outdated, currently the one relevant is a single control system for a production line,
shop, enterprise, corporation, which has a flexible interface that can be configured in a minimum of
time, without the involvement of software developers. This is possible if the development of the HMI
interface will be implemented on new approaches in the form of a specialized language based on
natural language, which will reduce the time of development and implementation of additive cyber
design.

¢ Keywords: Industry 4.0, Industrial Internet of Things, Smart Manufacturing, Cyber-Physical
Production Systems, Human Machine Interface, Graphical User Interface.

Introduction

Global competition in the production of high-tech products is characterized by
shortening life cycles (LC), complicating technical and technological preparation of
production (TPP) and increasing requirements for their control and monitoring in real
time [1-2]. Requirements for achieving high quality of such products require constant
improvement of technological processes (TP), as well as changes in the structure of
their management, which are central factors of success for manufacturing companies.
With the development of Industrial Internet of Things (IIoT) and Industry 4.0, the
introduction of Cyber-Physical Production Systems (CPPS), within the concepts of
Smart Manufacturung, is becoming more widely used [3-5]. In turn, the digitization
of production processes and management processes requires the processing and
manipulation of large amounts of heterogeneous industrial data in real time and
throughout the product life cycle. To use industrial data, to gain a competitive

ISSN 2663-5712 11 www.sworldjournal.com

https://orcid.org/0000-0002-2590-7085
https://orcid.org/0000-0001-7856-5771
https://orcid.org/0000-0002-9931-9964

S
s O
, G
SWorldJournal Issue 9 /Part 1 { X
- (-,Q_h/ r’;]

advantage, it is necessary to provide flexible, educatable, Lean Production (LP),
which must be human-centered [6].

But, despite the rapid development of research data, the development and
implementation of CPPS still remains an individual task for each enterprise, and, as a
result, there is no single approach to the management of organizational and technical
production facilities.

To solve this problem, based on the proposed architectural and logical model of
process control in complex organizational and technical production facilities and
methods of its decomposition, the control process technology is developed [7]. On its
basis the description system models that allow the developer to receive algorithms of
functioning of organizational and technical production objects, both as a whole and at
each stage are offered.

The Jump LC model is proposed and formalized, based on the synthesis of
visual components and formal representation of properties and events, which allows
to automate the development of additive cyber-design, based on the use of "solution
containers" and "linguistic variables" [8§].

It should be noted that the proposed decision difficult to understand users and is
a mathematical core, for which it is necessary to develop formal language describing
the structure and parameters of the developed additive cyber design that is as close
and intuitive to some subset of natural language and applicable in a given subject
matter area (SMA).

On the one hand, it was found that developers of additive cyber-design CPPS
use binding to user interface elements and minimize the use of software code. This
code, in most cases, is a handler of an event initiated by the user or internal processes,
interacting with the necessary visual elements to solve a problem.

On the other hand - users who are specialists in SMA, can formulate a
semantically correct structure and internal hierarchy of all interface elements with the
necessary values of parameters and events that must be implemented to solve the
tasks in the TOR.

There is a need to develop a syntactic and semantic model of a new formal
language, building a clear and simple (for professionals and developers) additive
cyber-design, close to some subset of natural language. This will help solve the
problem of automatic transformation of semantic rules to describe the process of
developing the HMI interface CPPS in a syntactically and terminologically correct
structure, to implement its compilation in the required development environment.

1. Development of language model specification

Define the concept of language model (LM) - a declarative (non-procedural)
language, the purpose of which is to define and describe the terminology, which is
based on the proposed and the relationship between metadata and data of the subject
area, as well as ways to transform them.

This paper proposes the following specification of the language of data models:

— alphanumeric characters are allowed, which are supported by high-level
programming language development environments and correspond to the ASCII code
table: +-\.,!“<>=()$% & ~* & @ space; { };

— keywords: basic concept in the form of words reserved in the developed

ISSN 2663-5712 12 www.sworldjournal.com

S
s O
, G
SWorldJournal Issue 9 /Part 1 { W
- (-,Q_h/ r’;]

mathematical model (MM), which are used to describe key features such as:

Form — some selected and uniquely identified part of the subject area. Its
purpose is to describe and present the visual structure of additive cyber design in the
form of basic blocks;

Form™™ — main form for describing and presenting the visual structure of
additive cyber design;
Form™* — an auxiliary form for presenting or entering visual information that is

called from the main form;

ParameterForm — a set of types and methods of describing the properties of the
subject area, selected and grouped by certain characteristics, as well as identified by
name. Purpose - a description of the parameters necessary and sufficient to display
and model a visual representation of Form (Form™ , Form"");

ElementForm — an element or group of GUI elements (subclass of an object) to
visually represent the interaction between the user and the simulated functionality of
the additive cyber design. They contain the necessary features for the implementation
of the user interface, or management and interaction with information flows and data;

EvenForm — event or group of events (action) that may occur (have already
occurred, or will occur) with the subject area, at a certain point or time interval.
Identified by time (necessity) and the object to which the event belongs. With one
object, at one time, only one event can occur, which is pre-initialized by the user;

ParametrElement — types and methods of describing the properties of elements,
both individual and grouped by certain characteristics and identified by name.
Purpose - a description of the parameters necessary and sufficient for the presentation
and modeling of the visual representation of the element, within a single information
object;

EventElement — an event, group of events, or condition that may occur (has
already occurred or will occur) with a GUI that performs a specific function at a
specific point or time interval. Identified by time (necessity) and the element to which
the event belongs. Only one user-initiated event can occur with one object at a time.
Purpose - one of the main properties of the element, which is limited: the
functionality of this GUI element, scope (in terms of the need to use in this model of
additive cyber-design CPPS), the need and role in the overall concept of application
in the user interface for testing information flows;

ValueElement — value assigned to the type and method of describing the
properties of the GUI element. Purpose - assignment of a specific value (integer,
linguistic, Boolean) type, or method of describing the parameters, depending on the
functional features and implementation of the visual intuitive interface of each part of
the subject area in accordance with the algorithm. For some ParameterForm and
ParameterElement in their functional purpose and nominal identification, the values
may be the same, depending on the requirements of CPPS;

LingusticVariable — named (in the natural language of the system) logical
description of actions in the event of events. Such descriptions can be grouped by a

number of features. Purpose - assignment of an event class or a single event to a
linguistically intuitive user-friendly model of the variable description of reactions in

ISSN 2663-5712 13 www.sworldjournal.com

s
SWorldJournal Issue 9 / Part 1 (Ym—

the event of an event;

ContainerSolution —named description of reactions, when an event or group of
events occurs, at a certain point in time on an element (group of elements), or subject
area. Is rigidly structured, depending on the high-level programming language and
development environment that is needed to achieve the development goal.
Application - a partial or complete solution to perform the necessary actions with the
data (information flows) necessary to achieve the goal of development, provided that
the main goal of the development of additive cyber-design or at certain levels of
decomposition;

parameter — the name of the parameter that describes or characterizes Form or
the GUI element;

value — the value of the parameter, which can have both a digital value and a
registered special word in the development environment;

name — ContainerSolution name, which is clear to the end user;

event — the name of the event that is possible on Form or the GUI element;

cod — part or fragment of program code that solves a problem and is stored in
ContainerSolution .

» identifiers used to denote such features:
¢ an indication that parameters and events belong to domain or non-domain types:

domen, not domen. Domains of the corresponding characteristics (values)

belonging to the listed (accounting) type which has a possibility of a choice from
in advance formed list. An example is some ParameterForm parameters of Form
display, which can take on values true or false. For example, the Align

) and
), can take the values fixed by the CPPS development

parameter, that is inherent in the dom(parameter

P _ cnucok

n

I/
dom(parameter,

environment and specified in the TOR;

e data type values (value), which determines the characteristics of the parameters
ParameterForm and ParametrElement (text, boolean, integer, integer negative,
text, phrase);

e linguistic description of the reference feature LingusticVariable (name) on

ContainerSolution , which contains the required cod ;

e basic concepts of the Jump LC model, which make it possible to link events
ElementForm and EventElement, contain a set of certain event, belonging to a
certain visual graphic element with ContainerSolution (cod) through
LingusticVariable (name).

As you can see, unlike keywords, the proposed identifiers can theoretically be
redefined, but this leads to errors, so the above identifiers are included in a fixed
dictionary of keywords.

> literals, a set of values that are not represented by an identifier.

String literals are represented as a sequence of allowed characters with different
spellings (uppercase and lowercase) letters. For example, name_form, which is used
in the parameters Caption, Name etc., as well as assigning a unique name (name)

ISSN 2663-5712 14 www.sworldjournal.com

s
SWorldJournal Issue 9 / Part 1 (Ym—

for each LingusticVariable, which contains a certain piece of program code. For

"nn

example, "save in the database", "calculate the result", etc., which are set by the end
user for the convenience of the methodology being developed.

Algebraic letters — letters that are a description of simple logical operations of
the type True, False, which allow to set values (value) of a parameter (parameter),
belonging to ParameterElement, ParameterForm and is necessary and sufficient to
describe the properties of the visual elements of the CPPS, or the function of the
Collaborative Manufacturing Execution System (c-MES), in accordance with the
necessary requirements.

Reserved letters are a word, phrase or abbreviation that allows you to select a
property of the parameter required to achieve the conditions specified in the
algorithm. An example is the WindowsState form property in the RadStudioXE16
development environment, to which you can select reserved abbreviations:
wsNormal,wsMinimized, wsMaximized . That is, on first launch, the developer can
specify the type of form display. wsNormal — default display, in the form in which it
was created at the design stage, wsMinimized — the form that is displayed in a
minimized form on the taskbar, wsMaximized — when launched, the form expands to
the full size of the desktop.

Reserved letters can be common to ParameterForm and ParametrElement, as
well as specialized, ie belong to a certain visual form, which determines the specifics
of an element. However, it should be noted that the reserved letters to determine the
values of a parameter of visual components that have the same purpose, can perform
different specified functions and handle events in the same development
environment.

Types of values presented, which contain some parameters of ParameterForm
and ParametrElement , permissible in the field of application:

Integer data type (integer) — allows you to assign a parameter ParameterForm
and/or ParametrElement a certain and necessary digital value of the dimension or
coordinates of the location of the visual element relative to Form. Used mainly to
describe visual graphic elements. It is the smallest logical element of a two-
dimensional digital image in raster graphics (pixel). The length of the line depends on
the screen resolution and the TOR requirements put forward by the customer to the
developer.

Integer negative — allows you to assign a parameter a certain value that is within
the range (-11,23,...,n), which belongs exclusively to ParametrElement and
describes the numbering in this context:

—1 —numbering is missing, the parameter is not involved;

1,2,3,...,n — numbering of the graphic image (icon) which belongs to a certain
parameter (parameter) for ElementForm .

Textual / linguistic (char) — allows you to assign to the parameter a logical order
of the values of the characters that contain the necessary user explanations or the
name of the graphical elements required for ease of use with CPPS. Also, this type of
value representation is used to specify a specific name LingusticVariable , assigned to

the event EvenForm, EventElement .

ISSN 2663-5712 15 www.sworldjournal.com

s
SWorldJournal Issue 9 / Part 1 (Ym—

Logical (boolean) — can only take two values: true or false and acts as a switch
to use a parameter in ParameterForm and ParametrElement .

Text phrase (enumerated type) — the type of data specified by the list in the form
of a domain, which allows you to specify a list of reserved words in the development
environment or abbreviations that can take one or another parameter for

ParameterForm and ParametrElement .

Dividers — symbolic designations of allocation of the basic elements of a
syntactic construction developed LM.

<Form> (angle brackets Form) — are used to identify a keyword that indicates
the beginning of a meta description of a particular Form in the design of LM.

</Form> (slash angle brackets Form) — i1s used to identify a keyword that
indicates the completion of a meta description of a particular Form in the design of
LM.

For the proposed keyword design, at the beginning and end of the meta
description of Form the following restrictions are imposed: Form name can contain
numbers like Forml, or a letter definition, for example, Form master or

Form_add operat. In this case, the keyword of the beginning of the meta

description must coincide with the keyword of the end of the meta description of a
particular Form in the design of LM. If this design requirement is not met, the MM
interpreter will not be able to perceive the content as a meta-description of all the
necessary parameters and events inherent in the Form.

{ (opening bracket) — mandatory meta description at the beginning of the meta
description line Form and ElementForm .

} (closing brackets) — mandatory meta description completion character Form
and ElementForm .

(hash sign) — after this symbol, the design of the LM interpreter perceives the
beginning of the description of the graphical visual elements of the user interface
(ElementForm).

/# (slash hash sign) — after this combination of characters, the interpreter MM
believes that the description of the graphical visual elements of the user interface
(ElementForm) is completed.

/ (slash) — used to define hierarchies of meta-descriptions of visual graphic
elements (ElementForm), according to the tree of construction of additive cyber
design and is applied inside # /# meta description of Form.
ElementForml/ElementForm2 — must be understood as ElementForm?2, that is
inside ElementForml and is an integral part of it.

[] square brackets — used to meta-describe the required parameters and events
ParameterForm, EvenForm, ParametrElement, EventElement .

; (semicolon) — mandatory LM construction symbol, which indicates that the
assignment to this parameter or event corresponding value and name completed,

applied internally.
, » (listing through a comma) — used to list parameter names for

ParameterForm , ParametrElement, and also event for EvenForm, EventElement
provided for a set of several parameter or event corresponding values value and

ISSN 2663-5712 16 www.sworldjournal.com

S
s O
, G
SWorldJournal Issue 9 /Part 1 { W
- (-,Q_h/ r’;]

name are the same, applied internally.
= (equal sign) — assigns parameter a certain value value and is used to

determine event certain name with LingusticVariable, which contains a link to cod

or its fragment in ContainerSolution. It should be noted that depending on the
context (logic and content of the performed actions), this sign can be interpreted as an
instruction of assignment, according to which for the specified basic parameter the
value which belongs to it is defined.

Comments — all characters and strings written inside this construct by the LM
interpreter are ignored and perceived as comments. Alphanumeric characters of
national alphabets are allowed, supported by the operating system and development
environment. The limitation for comments is that the sequence should not exceed 255
characters.

?7** (question mark with two asterisks) — indicates that the specified characters
will be followed by a comment that is ignored by the LM interpreter.

**7 (two asterisks and a question mark) — shows that after the specified
characters the comment ends and the text which is not ignored by the LM interpreter
goes further.

To adapt the developed syntax of the description of LM, it is proposed to use the
Bekus-Naur form. The rationale for this choice is that the extended Becus-Naur form
is used to describe context-free grammars [9] and simplifies and reduces the scope of
the description. The extended Becus-Naur form is described in the international
standard [10]. The analysis of which showed that this form makes it possible to
develop an intuitively simple and adaptive formal language for presenting and
describing the necessary data for the development of CPPS, based on approaches to
object-oriented programming.

Based on the above specification, the language of the data models and the basic
concept of the Jump LC model, the following syntactic diagram of LM additive
cyber-design is proposed. (fig. 1).

The syntactic diagram proposed in this study of the types of representation of
values that may belong to the identifiers is presented in figure 2.

As you can see from Figure 2, the Parameter identifier, Event refers to domen
(list) type and is represented as a text word or abbreviation related to
ParameterForm_name and EvenForm name, and ParameterElement and

EvenElement , according to figure 1.
List of parameters (parameter) and events (event), belonging to

ParameterForm_name, EvenForm name, within a single development
environment, is constant and unchanging. For a list of parameters (parameter) and

events (event), belonging to ParametrElement, EventElement in accordance, the
same limitation is that these visual graphic elements have the same purpose within
the same development environment. It is worth noting that this type belongs to value
for ParametrElement and ParameterForm name, which contain a text word or

abbreviation reserved by the development environment.

ISSN 2663-5712 17 www.sworldjournal.com

SWorldJournal Issue 9 / @art 1 /{S- z

;@-IE/ememF orminameF 0rm7name|-@—>

ParameterForm_name EventForm_name

. arameter1|->@->|Parumeteer-)@* value |,
—P@ IE/ementForm_ @—>

ParameterElement EventElement

|Parameter 1|->@->

value

|Pa) ameter| I}@-}| Parameter2| |'>@'>

value

domen

i
Parameter P Enumerated type (test word or abbreviation)
1]

Event » Enumerated type (test word or abbreviation)

not_domen

Value ™™ Integer data tvpe

—» [nteger negative

> Text / Linguistic

——» Logical (boolean)

domen

——®| Enumerated type (test word or abbreviation)

Name

Fig. 2. Syntactic diagram of types of representation of values of identifiers

ISSN 2663-5712 18 www.sworldjournal.com

r..p "
o G
[ssue 9 /Part 1 { X
Identifiers value and name belong to not_domen (not accounting) type. This is

justified by the fact that the value value can be set by the developer depending on the
requirements of TOR for additive cyber design. For the name identifier, which is
included in LingusticVariable, the name that refers to ContainerSolution, contains

the required fragment or part of the program code (cod). It is set by the user, taking
into account its logical advantages and ease of use.

For the convenience of reading and presentation of the developed declarative
language (Fig. 1-2) it is necessary that it has the quality of comprehension and
reading. This can be achieved using at least three principles of language
representation [11], namely:

— be as linear as possible;

— be brief;

— be self-documented.

Based on the proposed assumptions and recommendations, the following type of
LM recording style is proposed for the developed CPPS declarative language, which
allows to simplify and standardize the code..

SWorldJournal

Example 1
< Form _master >

{ 7%* opening a block describing parameters and values, as well as events and
names LingusticVariable nns Form master **?
[parameterl = value; parameter?2, parameter3 = value |
[eventl = name;event2 = name |
} 7%* closing the block describing parameters and values, as well as events and
names LingusticVariable nns Form master **?

“ the name of the item in the development environment”
?** opening the block of description of visual graphic elements Form master **?

{ 7** block of Elementl Form master description **?
[parameterl = value; parameter?2, parameter3 = value |
[eventl = name;event2 = name |
} 7%* closing the block of Elementl Form_master description **?
{ 7** block of Element2 Form master description **?
[parameterl = value; parameter?2, parameter3 = value |
[eventl = name;event2 = name |
} 7** closing the block of Element2 Form_ master description **?

/# 7** closing the block of description of visual graphic elements of Form master
*%9

</Form _master >

If necessary, implement a hierarchy (construction tree) of
ElementForml/ElementForm2 visual graphic elements the following fragment of the
meta-description structure 1s offered:

ISSN 2663-5712 19 www.sworldjournal.com

s
SWorldJournal Issue 9 / Part 1 (Ym—

Example 2.
“ the name of the item in the development environment” ?** opening the block of
description of Form master visual graphic elements **?
{ 7** block of ElementlForm master description **?
[parameterl = value; parameter?2, parameter3 = value |
[eventl = name;event2 = name |
} 7%* closing the block of ElementlForm _master description **?
/ *“ the name of the item in the development environment”
{ 7** block of Element2Form master description **?
[parameterl = value; parameter?, parameter3 = value |
[eventl = name;event2 = name |
} 7%* closing the block of Element2 Form master description **?

/# 7** closing the block of description of Form master visual graphic elements **?

Using “/” (slash) will allow the LM interpreter to determine the degree of
nesting (belonging) of the visual element in another, ie the ability to implement a
structure tree (Structure) of additive cyber-design in the development environment.
Figure 3 shows a graphical representation of the structure of the construction tree
Form master construction tree of CPPS (example 1, and example 2, b).

To determine the appropriate value and name, in the examples above, in
LingusticVariable for parameter and event accordingly, after (=) the value type is

set. In the absence of values, or the use of values reserved by the default development
environment, this parameter is not declared in the meta description (not indicated).

Form_master Form_master
Element]l_Form_master |—> Elementl Form_master
Element2 Form_ master —»| Element2 Form_master
a) b)

a) ElementlForm _master 1 Element2Form _master definitely belongs
Form_master ;
b) Element2Form master belongs Element|Form master
Fig. 3. Graphical representation of the CPPS structure tree

Example 3 shows a meta-description of creating a blank form in the
environment RadStudio XE6 for VLC Form Application.

Based on the meta-description given in (1), a graphical representation of the
simplest user form was generated (Fig. 4).

A fragment of the meta description of additional visual graphic elements of the
Standard-Button type (a custom button that performs a specific event) is presented in

).

ISSN 2663-5712 20 www.sworldjournal.com

s S
SWorldJournal Issue 9 / Part 1 { X

Example 3
< Forml >

{
[Caption = example 1,ClientHeight = 464, ClientWidth = 687,

1
Height =503, Name = Form_master, Width =703] M

}

| =] o =]

{E] Form1 O eremple3 =
Object Inspector rx B
Form1 TForm -

Preperties | Events

BorderStyle bsSizeable ~

BorderWidth [0
» |Caption exemple3

ClientHeight 464

ClientWidth 687

Color [ciBtnFace
@ | Constraints (TSizeConstraints)

Cti3D & True

Cursor crDefault

Cu nHint

. -, o

Fig. 4. Ani:if;;gment of the RadStudio XE6 development environment of the
simplest user form

“Buttion_close”

[Caption = Close,Height =33, Top =408, Left = 560, 2
Name = Buttion _close, Width =91]

/#

Figure 5 shows an example implementation of a form with a Button element, the
meta-description of which is given in (1) and (2), respectively.

5|
=7 Form1) exemple3 el

[S] Button_close

Object Inspector L
Button_close TEutton -
Properties | Events
AlignWithMarging (] False ~
| Anchors [akLeft,akTop]
BiDiMode bdLeftToRight
Cancel [False
Caption Close
CommandLinkHir
#)|Censtraints (TSizeConstraints)
Cursor crDefault o
CustomnHint pl = §
Default [False . T

Fig.5. A fragn{é_nt of the development environment with the implementation of
the form and the graphic element Button

ISSN 2663-5712 21 www.sworldjournal.com

s
SWorldJournal Issue 9 / Part 1 (Ym—

In addition to the implementation of the graphical visual interface shown in
fig. 4-5, based on meta-descriptions (1) - (2) the program code in Pascal language
was generated, presented in fig. 6.

interface

ns;jnapi.windnws, Winapi.Messages, System.SysUtils, System.Variants, System.Classes, Vel.Graphics,
Vecl.Controls, Vcl.Forms, Vcl.Dialogs:

type

TForml = class (TForm)
: TBucton:

Fig. 6. Program code in Pascal

Each element of the LM description given in the syntactic model (1) - (2) is
written according to the syntactic diagram (fig. 1) and the diagram of types of
representation of values of identifiers (fig. 2). The semantic model of LM is a system
of values attributed to constructions and developed syntactic LM (interpretations of
construction). This model is presented in the process of interpretation (analysis) of
the proposed rules of description and presentation of the LM specification, symbols
and their combinations.

Consider the meta-description of example (2), to determine the need to
implement the attachments (accessories) of one visual element in another, as shown
in figure 3, b. According to the proposed syntactic model (fig. 1), the meta-
description will take the following form:

“GrupBoxl”
[Caption = GroupBox1,Height =186,Top =272,

Left =4, Name = GroupBox1, Width = 678]

/ “Buttionl” 3)
[Caption = Close,Height =32,Top =146, Left =585,

Name = Buttionl, Width = 86]
/#

In the development environment, this meta-description allows you to implement
the degree of nesting of visual graphic elements in each other and build a "tree"
Forml, based on which the user interface is developed, according to the TOR on
CPPS and algorithm of functioning. Figure 7 shows a fragment of the generated user
interface, according to the meta description (3) in the development environment
RadStudio XE6.

From the above fragments of meta-descriptions (1) - (3) and fig. 3 you can
specify any depth of embedding of graphical elements of the user interface. This

ISSN 2663-5712 22 www.sworldjournal.com

s
SWorldJournal Issue 9 / Part 1 (Ym—

makes it possible to implement, using the proposed syntactic diagram of LM (fig. 1),
the structure of CPPS of any degree of complexity and thus simplify the process of
developing a visual component based on an object-oriented approach to

rogramming.
programming
=[] Form1 (] = = | =
= & GroupBex1 L Lol Lol Lol Lol Lol Lol
=] Buttont Y
Button1 TEution -
Properties | Events
Style bsPushButton A
| StyleElements [seFont,zeClient,seBorde
StylusHotimageln -1
TabOrder 0
TabStop True
Tag 0
Top 146 1
Visible True 1 2 2 2
Width 86 1 ¢ Gz y
WordWrap [1 False v = = J

Fig. 7. Implementation of the interface Forml

2. Development of syntax of meta description of events

Based on the proposed syntactic diagram presented in Figure 1, the following
meta-description of events (event) for Form and ElementForm is proposed. Based
on (1), we give an example of a simple meta-description of operation on an element
Buttion event Onclick , to practice LingusticVariable with the name Close All.

Example 4
< Forml >

{
[Caption = example 1,ClientHeight = 464, ClientWidth = 687,

Height =503, Name = Form_master, Width = 703]
[Caption = Close,Height =33, Top = 408, Left = 560,
Name = Buttion _close, Width =91,0nClick = Close _ All]

4

}

</ Forml >

As can be seen from the meta description in example (4), the developer
describes the existence of an event on the element Buttion with the name
Name = Buttion _close, LingusticVariable under the name Close All for the event

Onclick . This representation allows the developer to implement a model of the LC
process of managing the development of CPPS, which is presented in section 4 in the
form of a sequence of links:

event — LingusticVariable — ContainerSolution — cod (%)

ISSN 2663-5712 23 www.sworldjournal.com

,—-./(? -
| o
SWorldJournal Issue 9 /Part 1 (X D
k_gsﬁp
Based on the results of meta-description (4), the developer receives the
generated program code, shown in figure 8.

procedure TMaster.Button closeClick(Sender: TObject):
begin

Clnsed

end;

Fig. 8. The result of generating program code

Consider a fragment - an example of a meta-description of example (6)
implementation of a more complex code design, which was generated during the
development of "System of operational dispatching management of the production
enterprise" OSCEM "[12].

On Forml there is an element DBGrid _operac to display information from the

database (DB). In Properties DBGrid operace the binding to the visual drop-down
element of the interface PopupMenu_operac is specified. It is necessary to generate
the program code of removal from a DB of the selected record in DBGrid _operac .

Example 5
< Forml >

“DBGrid operace”

{ [DataSurce = Forml .IBDataSet Nak Operac,
Height =120, Left =344,Top = 24, Width = 320,
Name = DBGrid _operace,

PopupMenu = PopupMenu operac]

b

“DBGrid operace”
{
[Name = PopupMenu operac, Items = 28, |

[OnClick = N28Click]
}
B N28”

{
[Caption = Delete, Name = 28]

[OnClick = Delete select operace]

Tf

</ Forml >

ISSN 2663-5712 24 www.sworldjournal.com

s
SWorldJournal Issue 9 / Part 1 (Ym—

An example of the generated program code to implement the event per element
PopupMenu _operac, when pressed once, in the drop-down menu of options Delete

with internal indexing 28, the code selection from LingusticVariable =
Delete select operace. An example of the generated program code after editing by
the developer is presented in fig. 9.

procedure TForml.N28Click(Sender: TObject):
“Jbegin

if messageDlg(u3 Basu

then Forml.IBDa .Delete;

f{Forml. -Post;

Forml.IBDataSet NAK Operac.Close;

Forml.IBDataSet NAK Operac.Open;

x? ' ,mtConfirmation, [mb¥es,mbNo] , 0)=mrY¥es

DataModule redaktor.IBStoredProc_update_detal norma.ParamByName ('detal id').AsInteger := IBDataSet NAK DETAL.fieldByName('id detal').hRsInteger;
DataModule redaktor.IBStoredProc_update_destal norma.ExecProc;

IBDataSet_NRK DETAL.Refresh;

IBDataSet_NRK Operac.Refresh;

DBGridEhl.Refresh;

end;

Fig. 9. A fragment of the code after editing by the developer

Based on the examples above, the developer gets the opportunity, based on the
proposed model and methods of CPPS development [7], as well as on the basis of the
developed model of LF [8], using meta-description to create and implement additive
cyber-design, with the possibility of "partial" generation of program code [13]. The
completeness of the generation of program code directly depends on the content of
DB "Container Solutions", which contains examples of events (cod) that can be
performed in the process of developing additive cyber-design. This solution allows
you to adapt the proposed meta-description to any object-oriented language, and also
allows the developer to expand the database with new "Container Solutions", which
will reduce time spent in the development of additive cyber design for process
management in complex organizational and technical production facilities.

Conclusions

The complexity of developing the cyber component of CPPS is a complex
scientific and applied task, due to the fact that the HMI setup must be carried out in
parallel with the installation and commissioning of production lines, so the
development of HMI control and monitoring system must be timely. software
development is not cost effective. This necessitated the development of a new
declarative language for the definition and manipulation of data, close to some subset
of natural language. Therefore, the authors of this article proposed such solutions:

1. The specification of language of data models (keywords, identifier, literals,
types of the presented values, etc.) is developed.

2. The syntactic diagram of the developed language which gives the chance to
describe parameters, properties, values, and also events inherent both WindowsForm
and GUI elements of HMI of the user interface of additive cyber-design is offered.

3. The syntactic diagram of types of representation of values of identifiers is
developed.

4. Based on the results of the consistency of the developed terminological basis
of syntactic constructions of LM and terms, an interpreter has been developed that is
able to automatically translate HMI compiled in terminology close to some subset
into a natural development command format and a high-level programming language.
The syntactic constructions of the developed language are a script sequence and are

ISSN 2663-5712 25 www.sworldjournal.com

N
SWorldJournal Issue 9 / Part 1 | 'é‘;)

quite simple to understand for both specialists and ordinary developers (examples 1-
5). This gives grounds to claim that the use of the proposed LM by the developers
makes it possible to reduce the development time of additive cyber-design process
control in complex organizational and technical production facilities based on CPPS.

REFERENCES:

1. Frank, A. G., Dalenogare, L. S., Ayala, N. F. (2019). Industry 4.0
technologies: Implementation patterns in manufacturing companies. International
Journal of Production Economics, Vol. 210(C), P. 15-26, DOI:10.1016/
j.1jpe.2019.01.004.

2. Haseeb, M., Hussain, H. 1., Slusarczyk, B., Jermsittiparsert, K. (2019).
Industry 4.0: A solution towards technology challenges of sustainable business
performance. Social Sciences, Vol. 8(5), P. 154, DOI:10.3390/ socsci8050154.

3. Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open
research issues. Journal of industrial information integration, Vol. 6, P. 1-10,
DOI:10.1016/;.j11.2017.04.005.

4. Haleem, A., & Javaid, M. (2019). Additive manufacturing applications in
industry 4.0: a review. Journal of Industrial Integration and Management, Vol. 4(04),
P. 1930001, DOI:10.1142/S2424862219300011.

5. Yevsieiev V., Bronnikov A. Information systems development methodologies
application analysis for cyber-physical production systems development. III
International scientific-practical conference “Theory, science and practice” (Japan,
Tokyo, 5—8 October 2020). P. 398—401. DOI: 10.46299/1SG.2020.ILII1.

6. Yevsieiev V., Bronnikov A. Analysis of the cyber-physical production
systems implementation impact to achieve the goals of lean production. The IIth
International scientific and practical conference «Development of scientific and
practical approaches in the era of globalization» (USA, Boston, 28-30 September.
2020). P.221-226. DOI:10.46299/1SG.2020.1L.11.

7. Nevliudov, 1., Yevsieiev, V., Maksymova, S., Filippenko, I. (2020),
"Development of an architectural-logical model to automate the management of the
process of creating complex cyber-physical industrial systems", Eastern-European
Journal of Enterprise Technologies, Vol. 4, No. 3 (106). P. 44-52. DOI:
10.15587/1729-4061.2020.210761

8. Nevlyudov 1., Yevsieiev V., Miliutina S., Kollesnyk K. Object semantic
model for life cycle model “Jamp”. CAD in Machinery Design. Implementation and
Educational Issues. 25 Proceedings of Polish- Ukrainian Conference
(CADMD’2017). (Polish, Bielsko Biala, 20-21 October 2017). P. 31-32.

9. Plotnikova Z.V., Evseev V.V. (2009). Metod niskhodyashchego analiza s
prognoziruemym vyborom al'ternativ dlya konstekstno — zavisimykh gramatik.
Vostochno-evropeiskii zhurnal peredovykh tekhnologii. Vyp. 4/11(40). S.11-13.

10. The structure of the administration shell: trilateral perspective from France,
Italy and Germany. [Electronic resource]. URL:
https://www.de.digital/ DIGIT AL/Redaktion/EN/Publikation/the-structure-of-the-
administration-shell.pdf? blob=publicationFile&v=3. (Date of application:
14.09.2021).

ISSN 2663-5712 26 www.sworldjournal.com

=
~ o
SWorldJournal Issue 9 / Part 1 { X
- :_?(p

11. V.A. Morozova, V.I. Pautov.(2017). Predstavlenie znanii v ekspertnykh
sistemakh. Ekaterenburg.lzd.-vo Ural. Un-ta.. S — 120. ISBN 978-5-7996-2037-0.

12. Nevliudov,I., Yevsieiev, V., Demska,N., Novoselov, S. Development of a
software module for operational dispatch control of production based on cyber-
physical control systems. Innovative Technologies and Scientific Solutions for
Industries. 2020. No.4(14), P.155-168. DOI:10.30837/ITSS1.2020.14.155.

13. Nevliudov I., Yevsieiev V., J. H. Baker, Ahmad M. A., Lyashenko V.
(2021). Development of a cyber design modeling declarative language for cyber
physical production systems. Journal of Mathematical and Computational Science.
No.1. P.520-542, DOI:10.28919/jmcs/5152.

Anomauia. /lana nyonikayis npuceésayeHa SUpiuleHHI0O NUMAHHA aA8mMomamusayii po3pooKu
eHyukoeo HMI inmepdgeiicy ona moHimopuney ma Kepy8anHs mexHOoL02IYHUMU npoyecamu 8 Kibep-
Qizuunux eupobHUYUX cucmemax, fAKi eukopucmosyromecsi 6 Smart Manufacturing, 6 pamxax
konyenyii Industry 4.0. Ocobaugicmio maxux cucmem € 6eiuUKa eHY4UKicmv npu 8UKOPUCMAHHI ma
MoOepHizayii, MIHIMAIbHUL 4ac NepeHanaoku ma 6npo8adNCeHHs)y npoyec eupoonuymea. Tomy
BUHUKAIOMb NUMAaHHs peanizayii adexeamuux ma cydachux HMI inmepgheticie onepamopa
BUPOOHUY020 NPOYECY, 8 PedCUMU PearbHO20 Hacy, ONsi CB0EYACHO20 AHANI3Y Ma NPUUHAMMA
piwens. CyuacHi cucmemu KepySaHHs ABMOMAMUZ0BAHUMU JIHIAMU Maloms IHOUBIOYANbHUL
Xapaxkmep, Ha KOXCHOMY 8epCMAami € C80s1 «CUCMeEMA KePy8aHHA», 3aNnpONOHO8AHA BUPOOHUKOM, 6CI
Yi «cucmemu KepysanHsy 06’ eonyromscs 3a oonomozoro Industrial Internet of Things. Oonax, maxi
piwenns € sacmapinumu. Ha Oanuii yac axmyanvHum € piuleHHs CME0pPeHHs €OUHOI cucmemu
Kepy6amHs BUPOOHUYOIO TIHICIO, YeXoM, NIONPUEMCIMEOM, KOPNOPAYi€lo, AKA MA€E 2HYUKUU
iHmepghelc, wo Ne2KO HANAUWMOBYEMbCSA 6 MIHIMANbHULL Yac 0e3 3anyuyeHHs pOo3POOHUKIG
npocpamnozo 3abesneyenns. Lle moxcaueo, akujo pospooxka HMI inmepdeiicy, 6yde peanizosane na
HOBUX Ni0X00ax y 6uensidi cneyianizoéanoi Moei, Ha 6a3i NpupooOHOi MO8U, WO O003601UMb
CKOPOMUMU 4ac po3poOKU ma Npo8aA0NCEeHHs AOUMUBHO20 Kibep-OU3aliHy.

Keywords: Inoycmpis 4.0; [lpomucnosuii Inmepnem Peueti, Pozymne Bupoonuymeo, Kibep-
Dizuuni Bupobnuui Cucmemu, Jlhoouno-Mawunnuti Iumepgpeiic, [pagiunuii Iumepgheiic
Kopucmysaua.

Article sent: 16.09.2021 r.
© Yevsieiev V.

ISSN 2663-5712 27 www.sworldjournal.com

