
SWorldJournal Issue 18 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 106

https://www.sworldjournal.com/index.php/swj/article/view/swj18-01-054
DOI: 10.30888/2663-5712.2023-18-01-054

УДК 004.415.2.043
TECHNOLOGY OF CREATING RELIABLE PROGRAMS

ТЕХНОЛОГІЯ СТВОРЕННЯ НАДІЙНИХ ПРОГРАМ
Holub S.V. / Голуб С.В.
d.t.s., prof. / д.т.н., проф.

ORCID: 0000-0002-5523-6120
Salapatov V.I. / Салапатов В.І.

c.t.s., as. prof. / к.т.н., доц.
ORCID: 0000-0001-7567-637X

Cherkasy State Technological University, Cherkasy, Shevchenko 460, 18006
Черкаський державний технологічний университет, м. Черкаси, Шевченка 460, 18006

Abstract. This work deal with the creation of program models with the help of their description

by means of temporal logic. As a result, a program model is created in the form of a non-deterministic
finite automatons. Using this model, you can create programs in any procedural programming
language.

Key words: Kripke structure, program models, predicates, database, primitive-monitor,
primitive-protocol.

The problem of creating reliable error-free programs is still quite important and
relevant. This is especially important for management systems in aviation, military
affairs, financial and banking affairs and many other areas. Errors in control programs
can lead to accidents and disasters, as well as other irreversible processes. The main
source of errors in programs is the lack of handling of possible branches in programs,
as a result of which programs performed unexpected actions. It is almost impossible to
prove the correctness of the programs, especially when it comes to parallel programs.
As you know, the scientific research of Floyd and Hoare [1], as well as Robin Clark
[2] in this direction did not find practical application. Therefore, it is expedient to create
program models and prove the correctness of these models. The correctness of the
models is proved by the correspondence of the models to their description. Recently, a
similar technique has been used by the Model Checking technology [3], which involves
the creation and subsequent verification of models. But even when building a model
using the MOLEL CHECKING technology [3], the model must be verified using a
special verifier program. It is more natural to describe the model directly using
predicates, as groups of algorithmists used to do in terms of first-order logic. This
article is devoted to the description of models of programs using predicates and
creation of these models based on the description.

The method of describing models of program is based on a mathematical model
in the form of a Kripke structure [3]. As already mentioned, of all the technologies for
creating reliable programs, the most successful is the MOLEL CHECKING
technology, which is now implemented in industrial operation. This model has the
following appearance.

М = (S, S0, R, AP, L)
S – is the set of states of the model,
S0 – is the set of initial states of the model,
R = S х S – is the complete relationship between S, that is, transitions from one state

SWorldJournal Issue 18 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 107

to another, which may be possible,
AP - is a finite set of predicates,
L = 2АР – is a marking function, where each state defines a set of true possible
combinations of predicates.

The main elements of describing models are predicates, which describe individual
actions of algorithms under certain conditions. The main elements of describing models
are predicates, which describe individual actions of algorithms under certain
conditions. In this regard, a full description of the algorithm using predicates is more
appropriate. In the future, such a description is transformed into a computer
representation, which creates a model according to the description. At the same time,
the model will be created exactly according to the description and therefore it does not
need further verification. It is convenient to present predicates separately in the form
of a logical part and a meaningful part, which should be highlighted in curly brackets
for the logic and in square brackets for the meaningful part. The most convenient
internal representation of models in memory is a representation in the form of a
database, which consists of a description of all predicates and the relationships between
them [4] and is presented in Fig. 1. Such a representation will graphically correspond
to the block diagram of the algorithm of program. Both the model and the block
diagram of the algorithm of program will be fully consistent with the previous
description and will actually show the correct block diagram of the program. When
describing models, all possible ramifications are taken into account as fully as possible,
so software models are created complete and accurate. According to the obtained
model, it is much easier to create a reliable program without errors, because if the
models are correctly described, the model itself will be correct too.

MAIN CONNECT

Fig. 1. The structure of the program model database

 It should be noted that the proposed technology, like MOLEL CHECKING,
involves the description of parallel programs. At the same time, in case of
transformation of all meaningful and conditional parts of the predicates of the program
model into any imperative programming language. At the same time, it is possible to
convert all meaningful and conditional parts of predicates of the program model into
any imperative programming language. In our case, only the following temporary
operators are used from temporal logic: pUq and Nr, where p is a predicate that will be
true until (U) predicate q becomes true, and next (N) predicate r should be.
 Such a graph will be verified in advance, as it will fully correspond to the
description and will actually represent the block diagram of the program. According to
the obtained model, it is much easier to create a reliable program without errors. As
already mentioned, the main source of errors is that not all possible branches can be

Id_state
Type
List_of_actions
Mark

Id_state
(current)
Condition
Next_Id_state

SWorldJournal Issue 18 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 108

taken into account and implemented according to traditional technology. When
describing the models, such branches are taken into account as fully as possible,
therefore, the program models are created complete and accurate. Let's list the
operations on predicates that will be used in the description.
 That is p, ¬ p, p | q, p & q, pUq, Nr. List the operations on the predicates that will
be used in the description. In our case, the usual logic is extended due to operations U
and N, which was already discussed above. All program blocks can be implemented
with the help of temporal operators: linear, branched and all types of cycles. Linear
blocks represent assignment, input, output operators, as well as various functions that
are most often used for a certain class of tasks. Using this logic, branching can be
described by the following statement pUq, where p is a predicate before branching and
q is a predicate with a direct branching condition. In the case of branching, such as the
predicate DO CASE q – this set of branches can be represented as pU(q1 | q2 | q3 |…|
otherwise). Otherwise, the otherwise keyword indicates a transition if no conditions
are met. Loops can also be implemented using regular predicates that will be executed
if the condition of such predicates is true, and the execution of part of the predicate will
be executed in the loop while the loop condition is true. As soon as the loop condition
becomes false, the loop terminates.

Fig. 2. The structure of the program model database

If the monitor functions for capturing shared resources and their subsequent

release are built into the execution states of Act 1, Act 2 and Act 3, then such states can
be represented as shown in Figure 3, where each of these states has access to the shared
resource Com and to semaphore variable Sem. Data of type Com and Sem must be
public for all states Act1, Act2, Act3. Figure 3 shows a conditional display of states
that will be served by the monitor.

The reserved words true define unconditional execution, and actions indicate
actions in parallel branches. A primitive protocol that defines the parallel the parallel
actions in parallel branches. A primitive protocol that defines the parallel execution of
individual branches of the program, using temporal logic operators, can be represented
as ({busy=false} [actions 1] & {busy=false} [actions 2] &{busy=false} [busy=false]
&.. | wait) {busy=true} [joint actions]. Graphically it looks as it shown in figure 4.

The technology for creating reliable programs MODEL CHECKING is the most
successful technology and is now implemented in industrial operation. This model has
the following appearance.

SWorldJournal Issue 18 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 109

Fig. 3. Designation of monitor states for parallel program branches

Fig. 4. Graphic display of the protocol

 Currently, this technology is being introduced into the educational process of the
Cherkasy State University of Technology, work is underway to transform the
description of software models into programs in the target programming language.
Developments in this direction will make it possible to significantly increase the
reliability of programs and, with the correct description of their models, get closer to
error-free programs.

References.
1. C. Hoare. Communicating sequential processes. Prentice Hall International.

ISBN 978-0-13-153271-7. 238 p. 2015.
2. Robin Milner: A Calculus of Communicating Systems, Springer Verlag, ISBN

0-387-10235-3. 171 p. 1980.
3. Doron A. Peled, Michael Wooldridge. Model Checking and Artificial

Intelligence: 5th International Workshop, MoChArt 2008, Patras, Greece, July 21,
2008. ISBN10 364200430X, ISBN13 9783642004308.

4. Салапатов В.І. Порядок опису і обробки графа автоматної моделі
програми. ISSN 1028-9763. Математичні машини і системи. 2021. № 3. С.121-
125.

 Com

 Sem

 Com

 Sem

 Com

 Sem

 wait

https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-13-153271-7
https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D0%B8_%D0%BA%D0%BD%D0%B8%D0%B3/0387102353
https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D0%B8_%D0%BA%D0%BD%D0%B8%D0%B3/0387102353
https://www.bookdepository.com/author/Doron+A.+Peled
https://www.bookdepository.com/author/Michael+Wooldridge

SWorldJournal Issue 18 / Part 1

 ISSN 2663-5712 www.sworldjournal.com 110

Анотація. У цій роботі йдеться про створення програмних моделей за допомогою їх
опису засобами темпоральної логіки. У результаті створюється програмна модель у вигляді
недетермінованого скінченного автомату. Використовуючи цю модель, можна створювати
програми на будь-якій процедурній мові програмування.

Ключові слова: структура Крипке, програмні моделі, предикати, база даних, примітив-
монітор, примітив-протокол.

