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Abstract. In classical linear algebra the machine of matrices is widely used. But the classic 

linear algebra deals with continuous objects. Logical algebra, built by analogy with the classical 
linear algebra, builds the same models using discrete objects that have logical structure and obey the 
relevant laws. This leads to a significant difference in the functioning of the constructed models. This 
article is devoted to matrices, as elements for which the elementary logical elements are taken 
Boolean constants or finite predicates of arbitrary arity. In the work investigated the features of the 
operation of reversing of such matrices. All the results obtained are illustrated with clear examples. 

Keywords: finite predicate, Boolean matrix, predicative matrix, disjunction, conjunction, 
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Introductions. 

Established ideas about mathematical logic as a science that studies the laws of 

thinking using the apparatus of mathematics, mainly for the needs of mathematics 

itself, are becoming too narrow in modern conditions. With the expansion of the fields 

of application and the further development of mathematical logic, the view on it also 

changes. The objects of mathematical logic are any discrete finite systems, and its main 

task is the structural modeling of such systems. For the description of many logical 

processes and phenomena, for example, natural human language, an apparatus of 

equations similar to the apparatus used in mathematical analysis, but different from the 

latter in that it is intended to formalize not continuous, but discrete processes, would 

be best suited. Such a language is given by logical deductions, namely: deduction of 

statements and deduction of predicates. However, in order to be able to effectively 

solve these equations, it is necessary to bring these calculations to the level of an 

algebraic system. One of the most important algebraic models is the apparatus of 

matrices. This apparatus is the basis for the construction and further research of any 

vector spaces. At the same time, one of the most important operations on matrices is 

their rotation. For matrices defined over the field of logical scalars, this operation has 

certain features. 
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Main text. 

There are two types of logical matrices: Boolean and predicate. A logical matrix 

is called a Boolean matrix if its elements are logical scalars from the field G={0, 1} 

[1]. That is, the elements of the Boolean matrix are zeros and ones. In turn, a logical 

matrix is called predicate if all its elements are taken from the same field of finite 

predicates of arbitrary arity. 

Any function t=f(𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥𝑛𝑛) of n letter arguments 𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥𝑛𝑛 given on the 

set A, which accepts logical the value of t. Sometimes the finite predicate f is called k-

element, emphasizing that its alphabet A consists of k letters [2]. 

The elements of predicate scalar fields, depending on the arity of the predicate, 

can be presented as follows graphical models: 

 
Figure 1 – Graphic representation of predicate logical scalars 

Author's development 

 

Thus, each element of the predicate logical matrix can be presented in the form of 

a hypercube of dimension n [3]. For example, in pic. 1c) considered the case of the 

triple-place predicate R(x, y, z), which is given over the alphabet G={0, 1} with k=2 

letters. At the same time, each vertex of the hypercube corresponds to the value of the 

predicate at certain values of the arguments x, y, and z, which formed this vertex. The 

role of the unit element of the scalar field is played by the predicate, which is equal to 

one for all values of its arguments. Accordingly, the role of the null element is played 

by the predicate, which for all values of its arguments is equal to zero. Graphically, a 

unit element is represented by a hypercube with all vertices corresponding to ones, and 

a zero element by a hypercube with all vertices corresponding to zeros. 
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All operations on the elements of the logical scalar field are performed bit by bit. 

The category means the value of the considered predicate with one of the possible sets 

of arguments. Thus, binary operations (disjunction and conjunction) assume that their 

result will be an element, each bit of which corresponds to the value of the performed 

binary operation on the same-named bits of the predicates involved in the operation. 

The same-named categories mean the values of these predicates from the same sets of 

arguments. By the way, the unary negation operation is also performed bit by bit. These 

operations will be calculated according to the following rules: 

(𝑃𝑃𝑖𝑖 ∨ 𝑃𝑃𝑗𝑗) (𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥𝑛𝑛) = 𝑃𝑃𝑖𝑖(𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥𝑛𝑛) ∨ 𝑃𝑃𝑗𝑗(𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥𝑛𝑛),     (1) 

(𝑃𝑃𝑖𝑖 ∧ 𝑃𝑃𝑗𝑗) (𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥𝑛𝑛) = 𝑃𝑃𝑖𝑖(𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥𝑛𝑛) ∧ 𝑃𝑃𝑗𝑗(𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥𝑛𝑛),    (2) 

𝑃𝑃𝑖𝑖(𝑥𝑥1, 𝑥𝑥2, …, 𝑥𝑥𝑛𝑛) = 𝑃𝑃𝑖𝑖(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛).          (3) 

Graphic representation of these operations on the elements of the predicate 

matrices are shown in following pictures. 

 

 
Figure 2 – Graphic representation of disjunction 

Author's development 

 

 
Figure 3 – Graphic representation of conjunction 

Author's development 
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Figure 4 – Graphic representation of inversion 

Author's development 

 

Let us now consider the analytical representation of the predicate field of logical 

scalars. For example, the set of single-place predicates 𝑃𝑃𝑖𝑖(𝑥𝑥), i=0, 1, 2, 3, where 

x∈{0, 1}, can be considered as a field of logical scalars. This set is given by table 1. 

 

Table 1 – The set of single-place predicates given on the alphabet G={0, 1} 

x 𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3 

0 0 0 1 1 

1 0 1 0 1 
A source: [4] 

 

Next, single-digit predicates are represented by strings P=(P(0), P(1)). Then 

𝑃𝑃0=(0,0), 𝑃𝑃1=(0,1), 𝑃𝑃2=(1,0), 𝑃𝑃3=(1,1). Let us denote this scalar field by P. The set of 

logical scalars P given in this table is exhaustive. 

As for the operation of reversing, in the case of predicate matrices, its definition 

is somewhat more complicated than for Boolean logic matrices [4]. If we consider 

Boolean matrices as a special case of predicate matrices (they are set over the field of 

zero-place predicates), then it can be argued that under this condition the following 

definitions and assertions apply to Boolean matrices as well. But for them, all this can 

be calculated more easily [1]. 

A square logical matrix A is called orthogonal if the disjunction of all elements of 

each of its rows and the disjunction of all elements of each of its columns are equal to 

the same unit. At the same time, the conjunction of any two elements in each of its 
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rows and the conjunction of any two elements in each of its columns are identically 

equal to zero. 

For example, the logical matrix A over the field P of single-place predicates 

A = �
𝑃𝑃1 𝑃𝑃0 𝑃𝑃2
𝑃𝑃2 𝑃𝑃0 𝑃𝑃1
𝑃𝑃0 𝑃𝑃3 𝑃𝑃0

� = �
(0,1) (0,0) (1,0)
(1,0) (0,0) (0,1)
(0,0) (1,1) (0,0)

� 

is orthogonal, and the matrix 

B = �
𝑃𝑃1 𝑃𝑃3 𝑃𝑃2
𝑃𝑃0 𝑃𝑃1 𝑃𝑃0
𝑃𝑃2 𝑃𝑃0 𝑃𝑃1

� = �
(0,1) (1,1) (1,0)
(0,0) (0,1) (0,0)
(1,0) (0,0) (0,1)

� – 

no, because for example 𝑎𝑎12∧𝑎𝑎13=𝑃𝑃3∧𝑃𝑃2=(1,1)∧(1,0)=(1,0)≠0. 

Theorem. For square logical matrices A and B over the field of logical scalars 

G={0, 1} or the field of finite predicates of arbitrary arity, the equality АВ=Е holds, it 

is necessary and sufficient that A and B are orthogonal matrices and obey the condition 

В=𝐴𝐴𝑇𝑇. 

Proof. Let us assign to each rank of the elements of the scalar field, over which 

the matrices A and B are given, some index v=1, ..., (𝑘𝑘1 𝑘𝑘2 … 𝑘𝑘𝑛𝑛), where n is the arity 

of predicates that are elements of the scalar field, and 𝑘𝑘𝑖𝑖, i=1,𝑛𝑛, the number of 

characters in the alphabet above which the argument xi of these predicates is given. 

Thus, matrices A and B decompose into (𝑘𝑘1 𝑘𝑘2 … 𝑘𝑘𝑛𝑛) matrices over the Boolean set 

G={0, 1} 

𝐴𝐴𝑣𝑣=�
𝑎𝑎11𝑣𝑣 … 𝑎𝑎1𝑠𝑠𝑣𝑣
. . . . . . . . . . .
𝑎𝑎𝑠𝑠1𝑣𝑣 … 𝑎𝑎𝑠𝑠𝑠𝑠𝑣𝑣

� and 𝐵𝐵𝑣𝑣=�
𝑏𝑏11𝑣𝑣 … 𝑏𝑏1𝑠𝑠𝑣𝑣
. . . . . . . . . . .
𝑏𝑏𝑠𝑠1𝑣𝑣 … 𝑏𝑏𝑠𝑠𝑠𝑠𝑣𝑣

�, 

composed of the v-th ranks of elements of matrices A and B. Therefore, if the statement 

is valid for matrices over the Boolean field of scalars G={0, 1}, then it is also true for 

matrices whose elements are predicates of arbitrary arity. Due to this, it suffices to 

prove the statement for the case of the scalar field G={0, 1} [2]. Let the size of the 

matrices 𝐴𝐴𝑣𝑣 and 𝐵𝐵𝑣𝑣 be s×s. Let's choose an arbitrary integer t, 1⩽t⩽s. If the t-th row of 

the matrix 𝐴𝐴𝑣𝑣 is zero, then the t-th row of the matrix (𝐴𝐴𝐵𝐵)𝑣𝑣 will also be zero. Therefore, 

in each row of the matrix 𝐴𝐴𝑣𝑣 there is at least one unit, and this unit corresponds to some 
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unit in the matrix 𝐵𝐵𝑣𝑣 (let it be the element 𝑎𝑎𝑡𝑡𝑗𝑗𝑣𝑣 =1 to which 𝑏𝑏𝑗𝑗𝑡𝑡𝑣𝑣  corresponds). At f≠t 

(1⩽f⩽s) we have 𝑎𝑎𝑓𝑓𝑗𝑗𝑣𝑣 =0, because otherwise (𝐴𝐴𝐵𝐵)𝑓𝑓𝑡𝑡𝑣𝑣 =𝑎𝑎𝑓𝑓𝑗𝑗𝑣𝑣  𝑏𝑏𝑗𝑗𝑡𝑡𝑣𝑣=1, i.e. (𝐴𝐴𝐵𝐵)𝑣𝑣≠E. 

Similarly, in matrix 𝐵𝐵𝑣𝑣, all elements of row j, except  𝑏𝑏𝑗𝑗𝑡𝑡𝑣𝑣 , are equal to zero. Thus, in 

each row of the matrix 𝐴𝐴𝑣𝑣 there is at least one unit, and all these units are located in 

different columns. Therefore, the matrix 𝐴𝐴𝑣𝑣 is orthogonal. Similarly, the matrix 𝐵𝐵𝑣𝑣 is 

also orthogonal. The equality 𝐵𝐵𝑣𝑣=(𝐴𝐴𝑣𝑣)𝑇𝑇 is now obvious (every element of 𝑎𝑎𝑡𝑡𝑗𝑗𝑣𝑣 =1 

corresponds to 𝑏𝑏𝑗𝑗𝑡𝑡𝑣𝑣=1). The theorem is proved. 

Consider the above orthogonal matrix A as an example. According to the theorem 

just proved, its inverse will be its transposed matrix 𝐴𝐴𝑇𝑇: 

𝐴𝐴𝑇𝑇 = �
𝑃𝑃1 𝑃𝑃0 𝑃𝑃2
𝑃𝑃2 𝑃𝑃0 𝑃𝑃1
𝑃𝑃0 𝑃𝑃3 𝑃𝑃0

�

𝑇𝑇

 = �
(0,1) (0,0) (1,0)
(1,0) (0,0) (0,1)
(0,0) (1,1) (0,0)

�

𝑇𝑇

= 

= �
(0,1) (1,0) (0,0)
(0,0) (0,0) (1,1)
(1,0) (0,1) (0,0)

� = �
𝑃𝑃1 𝑃𝑃2 𝑃𝑃0
𝑃𝑃0 𝑃𝑃0 𝑃𝑃3
𝑃𝑃2 𝑃𝑃1 𝑃𝑃0

�. 

Obviously, the matrix 𝐴𝐴𝑇𝑇 is also orthogonal. Let us now calculate the 

multiplication of the orthogonal matrix A by its transposed matrix: 

A 𝐴𝐴𝑇𝑇 = �
(0,1) (0,0) (1,0)
(1,0) (0,0) (0,1)
(0,0) (1,1) (0,0)

� ⋅ �
(0,1) (1,0) (0,0)
(0,0) (0,0) (1,1)
(1,0) (0,1) (0,0)

� = 

= �
(0,1)∧(0,1) ∨ (0,0)∧(0,0) ∨ (1,0)∧(1,0)
(1,0)∧(0,1) ∨ (0,0)∧(0,0) ∨ (0,1)∧(1,0)
(0,0)∧(0,1) ∨ (1,1)∧(0,0) ∨ (0,0)∧(1,0)

 

                           
(0,1)∧(1,0) ∨ (0,0)∧(0,0) ∨ (0,1)∧(0,1)
(1,0)∧(1,0) ∨ (0,0)∧(0,0) ∨ (0,1)∧(0,1)
(0,0)∧(1,0) ∨ (1,1)∧(0,0) ∨ (0,0)∧(0,1)

 

                                                   
(0,1)∧(0,0) ∨ (0,0)∧(1,1) ∨ (1,0)∧(0,0)
(1,0)∧(0,0) ∨ (0,0)∧(1,1) ∨ (0,1)∧(0,0)
(0,0)∧(0,0) ∨ (1,1)∧(1,1) ∨ (0,0)∧(0,0)

� = 

= �
(1,1) (0,0) (0,0)
(0,0) (1,1) (0,0)
(0,0) (0,0) (1,1)

� = E. 
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For the above matrix B, the operation of reversing cannot be performed, that is, 

there is no exist reverse matrix for this matrix. It follows that the proven rule for 

calculating the reverse matrix for the matrix B does not hold: 

B 𝐵𝐵𝑇𝑇 = �
𝑃𝑃1 𝑃𝑃3 𝑃𝑃2
𝑃𝑃0 𝑃𝑃1 𝑃𝑃0
𝑃𝑃2 𝑃𝑃0 𝑃𝑃1

� ⋅ �
𝑃𝑃1 𝑃𝑃3 𝑃𝑃2
𝑃𝑃0 𝑃𝑃1 𝑃𝑃0
𝑃𝑃2 𝑃𝑃0 𝑃𝑃1

�

𝑇𝑇

= 

= �
(0,1) (1,1) (1,0)
(0,0) (0,1) (0,0)
(1,0) (0,0) (0,1)

� ⋅ �
(0,1) (1,1) (1,0)
(0,0) (0,1) (0,0)
(1,0) (0,0) (0,1)

�

𝑇𝑇

= 

= �
(0,1) (1,1) (1,0)
(0,0) (0,1) (0,0)
(1,0) (0,0) (0,1)

� ⋅ �
(0,1) (0,0) (1,0)
(1,1) (0,1) (0,0)
(1,0) (0,0) (0,1)

� = 

= �
(0,1)∧(0,1) ∨ (1,1)∧(1,1) ∨ (1,0)∧(1,0)
(0,0)∧(0,1) ∨ (0,1)∧(1,1) ∨ (0,0)∧(1,0)
(1,0)∧(0,1) ∨ (0,0)∧(1,1) ∨ (0,1)∧(1,0)

 

                           
(0,1)∧(0,0) ∨ (1,1)∧(0,1) ∨ (1,0)∧(0,0)
(0,0)∧(0,0) ∨ (0,1)∧(0,1) ∨ (0,0)∧(0,0)
(1,0)∧(0,0) ∨ (0,0)∧(0,1) ∨ (0,1)∧(0,0)

 

                                                   
(0,1)∧(1,0) ∨ (1,1)∧(0,0) ∨ (1,0)∧(0,1)
(0,0)∧(1,0) ∨ (0,1)∧(0,0) ∨ (0,0)∧(0,1)
(1,0)∧(1,0) ∨ (0,0)∧(0,0) ∨ (0,1)∧(0,1)

� = 

= �
(1,1) (0,1) (0,0)
(0,1) (0,1) (0,0)
(0,0) (0,0) (1,1)

� = �
𝑃𝑃3 𝑃𝑃1 𝑃𝑃0
𝑃𝑃1 𝑃𝑃1 𝑃𝑃0
𝑃𝑃0 𝑃𝑃0 𝑃𝑃3

� ≠ E. 

 

Conclusions.  

To reversing logical matrices, both Boolean and predicate, it is impossible to 

apply the algorithms that exist for ordinary matrices. As it was proved, not every logical 

matrix can perform this operation. In order for the reverse matrix to exist, logical 

matrices, in addition to their dimensions, are subject to an additional restriction 

regarding the composition of their elements. In ordinary linear algebra, there are no 

such restrictions. This is one of the essential differences between the apparatus of 

logical algebra and the usual mathematical apparatus of linear vector spaces. 
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Анотація. В класичній лінійній алгебрі широко використовується апарат матриць. Але 

класична лінійна алгебра має справу з безперервними об’єктами. Логічна алгебра, побудована 
за аналогією з класичною лінійною алгеброю, створює ті ж самі моделі за допомогою 
дискретних об’єктів, що мають логічну структуру та підкоряються відповідним законам. Це 
призводить до суттєвих відмінностей у функціонуванні побудованих моделей. Дана стаття 
присвячена матрицям, в якості елементів для яких обираються елементарні логічні 
елементи, а саме булеві константи або скінченні предикати довільної арності. В роботі 
досліджено особливості операції обертання таких матриць. Всі отримані результати 
проілюстровано наочними прикладами. 

Ключові слова: скінченний предикат, булева матриця, предикатна матриця, 
диз’юнкція, кон’юнкція, заперечення, ортогональна логічна матриця, логічний скаляр, 
обертання логічної матриці. 
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