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Abstract. In classical linear algebra the machine of matrices is widely used. But the classic
linear algebra deals with continuous objects. Logical algebra, built by analogy with the classical
linear algebra, builds the same models using discrete objects that have logical structure and obey the
relevant laws. This leads to a significant difference in the functioning of the constructed models. This
article is devoted to matrices, as elements for which the elementary logical elements are taken
Boolean constants or finite predicates of arbitrary arity. In the work investigated the features of the
operation of reversing of such matrices. All the results obtained are illustrated with clear examples.
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Introductions.

Established ideas about mathematical logic as a science that studies the laws of
thinking using the apparatus of mathematics, mainly for the needs of mathematics
itself, are becoming too narrow in modern conditions. With the expansion of the fields
of application and the further development of mathematical logic, the view on it also
changes. The objects of mathematical logic are any discrete finite systems, and its main
task is the structural modeling of such systems. For the description of many logical
processes and phenomena, for example, natural human language, an apparatus of
equations similar to the apparatus used in mathematical analysis, but different from the
latter in that it is intended to formalize not continuous, but discrete processes, would
be best suited. Such a language is given by logical deductions, namely: deduction of
statements and deduction of predicates. However, in order to be able to effectively
solve these equations, it is necessary to bring these calculations to the level of an
algebraic system. One of the most important algebraic models is the apparatus of
matrices. This apparatus is the basis for the construction and further research of any
vector spaces. At the same time, one of the most important operations on matrices is
their rotation. For matrices defined over the field of logical scalars, this operation has

certain features.
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Main text.

There are two types of logical matrices: Boolean and predicate. A logical matrix
is called a Boolean matrix if its elements are logical scalars from the field G={0, 1}
[1]. That is, the elements of the Boolean matrix are zeros and ones. In turn, a logical
matrix is called predicate if all its elements are taken from the same field of finite
predicates of arbitrary arity.

Any function =f(x4, x,, ..., x,) of n letter arguments x;, x,, ..., X, given on the
set A, which accepts logical the value of #. Sometimes the finite predicate f'is called &-
element, emphasizing that its alphabet 4 consists of & letters [2].

The elements of predicate scalar fields, depending on the arity of the predicate,

can be presented as follows graphical models:

P(0) P(1)
e X
0 1
Q(0,0) Q(1,0) L K ROOD -"R(I,O,l)
a) single-place predicate b) double-place predicate ¢) triple-place predicate

Figure 1 — Graphic representation of predicate logical scalars

Author's development

Thus, each element of the predicate logical matrix can be presented in the form of
a hypercube of dimension # [3]. For example, in pic. 1¢) considered the case of the
triple-place predicate R(x, y, z), which is given over the alphabet G={0, 1} with k=2
letters. At the same time, each vertex of the hypercube corresponds to the value of the
predicate at certain values of the arguments x, y, and z, which formed this vertex. The
role of the unit element of the scalar field is played by the predicate, which is equal to
one for all values of its arguments. Accordingly, the role of the null element is played
by the predicate, which for all values of its arguments is equal to zero. Graphically, a
unit element is represented by a hypercube with all vertices corresponding to ones, and

a zero element by a hypercube with all vertices corresponding to zeros.
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All operations on the elements of the logical scalar field are performed bit by bit.
The category means the value of the considered predicate with one of the possible sets
of arguments. Thus, binary operations (disjunction and conjunction) assume that their
result will be an element, each bit of which corresponds to the value of the performed
binary operation on the same-named bits of the predicates involved in the operation.
The same-named categories mean the values of these predicates from the same sets of
arguments. By the way, the unary negation operation is also performed bit by bit. These

operations will be calculated according to the following rules:

(Pi Vv P]) (xl’ X25 e Xn) - Pi(xla X25 e Xn) Vv Pj(xla X2y eens Xn), (1)
(Pi A P]) (xla X5 oees xn) = Pi(xla X5 oees xn) A Pj(xla X5 oees xn)> (2)
Py(x1, X ooy X)) = Py (1, X, o, Xy). 3)

Graphic representation of these operations on the elements of the predicate

matrices are shown in following pictures.

Figure 2 — Graphic representation of disjunction

Author's development

Figure 3 — Graphic representation of conjunction

Author's development
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Figure 4 — Graphic representation of inversion

Author's development

Let us now consider the analytical representation of the predicate field of logical
scalars. For example, the set of single-place predicates P;(x), i=0, 1,2, 3, where

xe{0, 1}, can be considered as a field of logical scalars. This set is given by table 1.

Table 1 — The set of single-place predicates given on the alphabet G={0, 1}
x | Pp | P | P, | P3
0 0 0 1 1
1 0 1 0 1

A source: [4]

Next, single-digit predicates are represented by strings P=(P(0), P(1)). Then
Py=(0,0), P;=(0,1), P,=(1,0), P;=(1,1). Let us denote this scalar field by P. The set of
logical scalars P given in this table is exhaustive.

As for the operation of reversing, in the case of predicate matrices, its definition
is somewhat more complicated than for Boolean logic matrices [4]. If we consider
Boolean matrices as a special case of predicate matrices (they are set over the field of
zero-place predicates), then it can be argued that under this condition the following
definitions and assertions apply to Boolean matrices as well. But for them, all this can
be calculated more easily [1].

A square logical matrix 4 is called orthogonal if the disjunction of all elements of
each of its rows and the disjunction of all elements of each of its columns are equal to

the same unit. At the same time, the conjunction of any two elements in each of its
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rows and the conjunction of any two elements in each of its columns are identically
equal to zero.

For example, the logical matrix 4 over the field P of single-place predicates

P, Py P\ [(0,1) (0,0) (1,0)
A(PZ Py P1> (1,0) (0,00 (0,1)
Po P3P/ \(0,0) (1L,1) (0,0)

is orthogonal, and the matrix

P, P, P [(01) (1,1) (1,0)
B=(P0 P, PO)— 0,0) (0,1) (0,0) |-
P, Py Py (1,0) (0,00 (0,1)

no, because for example a;,Aa,3=P;AP,=(1,1)A(1,0)=(1,0)=0.

Theorem. For square logical matrices A and B over the field of logical scalars
G={0, 1} or the field of finite predicates of arbitrary arity, the equality AB=F holds, it
is necessary and sufficient that 4 and B are orthogonal matrices and obey the condition
B=AT.

Proof. Let us assign to each rank of the elements of the scalar field, over which

the matrices 4 and B are given, some index v=1, ..., (k; k, ... k;,), where n is the arity

of predicates that are elements of the scalar field, and k;, i=1,n, the number of
characters in the alphabet above which the argument xi of these predicates is given.

Thus, matrices 4 and B decompose into (k; k, ... k,,) matrices over the Boolean set

G={0, 1}
aly .. als b?; ... bis
U=l and BV=| ........... ,
aly .. ays J1 e bYs

composed of the v-th ranks of elements of matrices 4 and B. Therefore, if the statement
is valid for matrices over the Boolean field of scalars G={0, 1}, then it is also true for
matrices whose elements are predicates of arbitrary arity. Due to this, it suffices to
prove the statement for the case of the scalar field G={0, 1} [2]. Let the size of the
matrices AY and BY be sxs. Let's choose an arbitrary integer ¢, 1<¢<s. If the #-th row of
the matrix A" is zero, then the #-th row of the matrix (AB)" will also be zero. Therefore,

in each row of the matrix A” there is at least one unit, and this unit corresponds to some
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unit in the matrix BY (let it be the element af;=1 to which bj; corresponds). At f#t

(1<f<s) we have af;=0, because otherwise (AB)j.=af; b;,=1, ie. (AB)"#E.
Similarly, in matrix BY, all elements of row j, except b]”t, are equal to zero. Thus, in

each row of the matrix AV there is at least one unit, and all these units are located in
different columns. Therefore, the matrix A” is orthogonal. Similarly, the matrix BY is

also orthogonal. The equality BY=(A"”)T is now obvious (every element of aj =1

corresponds to bj;=1). The theorem is proved.

Consider the above orthogonal matrix 4 as an example. According to the theorem

just proved, its inverse will be its transposed matrix A

P, Py, PAT [/(01) (0,00 (L0)\
AT—<P2 Py P1> =[ (1,0) (0,0) (0,1) | =
P, P, P, 0,00 (1L,1) (0,0

=1 (0,0) (0,00 (1,1 Py, Py, P3|
(110) (0'1) (0'0) PZ Pl PO

Obviously, the matrix AT is also orthogonal. Let us now calculate the

(0,1) (1,0) (0,0) <P1 P, P0>

multiplication of the orthogonal matrix 4 by its transposed matrix:

(0,1) (0,00 (1,0) (0,1) (1,0) (0,0)
AAT=( (1,00 (0,00 (0,1)]-{ (0,00 (0,00 (1,1)]=
(0,0) (1,1) (0,0) (1,0) (0,1) (0,0)

(0,1)A(0,1) v (0,0)A(0,0) v (1,0)A(1,0)
=1 (1,0)A(0,1) v (0,0)A(0,0) v (0,1)A(1,0)
(0,00A(0,1) v (1,1)A(0,0) v (0,0)A(1,0)

(0,1)A(1,0) v (0,0)A(0,0) v (0,1)A(0,1)
(1,0)A(1,0) v (0,0)A(0,0) v (0,1)A(0,1)
(0,0)0A(1,0) v (1,1)A(0,0) v (0,0)A(0,1)

(0,1)A(0,0) v (0,0)A(1,1) v (1,0)A(0,0)
(1,0)A(0,0) v (0,00A(1,1) v (0,1)A(0,0) | =
(0,0)A(0,0) v (1,1)A(1,1) v (0,0)A(0,0)

(1,1) (0,0) (0,0)
=1(0,0) (1,1) (0,0) |=E.
(0,0) (0,00 (1,1)
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For the above matrix B, the operation of reversing cannot be performed, that is,

there is no exist reverse matrix for this matrix. It follows that the proven rule for
calculating the reverse matrix for the matrix B does not hold:
Py P; Py\ (Pi P3 Pp\'
BBT_<P0 Py Po)'<P0 Py Po)_
P, Py P/ \P, Py P
o1 @Y @O\ /O @D @O\

=1(0,0) (0,1) (0,0) |-( (0,00 (0,1) (0,0)] =
(1,0) (0,00 (0,1) (1,0) (0,0) (0,1)

(0,1) (1,1) (1,0 (0,1) (0,0) (1,0
=1(0,0) (0,1) (0,00 |-((1,1) (0,1) (0,0) |=
(1,0) (0,0) (0,1) (1,0) (0,0) (0,1)

(0,1)A(0,1) v (1,1)A(1,1) v (1,0)A(1,0)
=1 (0,0)A(0,1) v (0,1)A(1,1) v (0,0)A(1,0)
(1,0)A(0,1) v (0,0)A(1,1) v (0,1)A(1,0)

(0,1)A(0,0) v (1,1)A(0,1) v (1,0)A(0,0)
(0,0)A(0,0) v (0,1)A(0,1) v (0,0)A(0,0)
(1,0)A(0,0) v (0,0)A(0,1) v (0,1)A(0,0)

(0,1)A(1,0) v (1,1)A(0,0) v (1,0)A(0,1)
(0,0)A(1,0) v (0,1)A(0,0) v (0,0)A(0,1) | =
(1,0)A(1,0) v (0,0)A(0,0) v (0,1)A(0,1)

@) O (00 (P P P
=D O (00 <P1 P, Po);tE
(0'0) (010) (1'1) PO PO P3

Conclusions.

To reversing logical matrices, both Boolean and predicate, it is impossible to
apply the algorithms that exist for ordinary matrices. As it was proved, not every logical
matrix can perform this operation. In order for the reverse matrix to exist, logical
matrices, in addition to their dimensions, are subject to an additional restriction
regarding the composition of their elements. In ordinary linear algebra, there are no
such restrictions. This is one of the essential differences between the apparatus of

logical algebra and the usual mathematical apparatus of linear vector spaces.
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Anomauin. B knacuunil 1iHIUHIT aneeOpi WupoKo UKOPUCMOBYEMbCS anapam mampuys. Ane
KIacuyHa JiHitiHa aneebpa mae cnpasy 3 beanepepsHumu 06 'ekmamu. Jlociuna aneebpa, nooyoosana
34 aHano2icl0 3 KIACUYHOW JIHIUHOIO0 aleedpoio, CMEOpIoe mi e cami mMooeni 3a 0ONOMO20H0
OUCKpemHUX 00 €KMIB, W0 Maoms 102IYHY CIMPYKMYPY Ma NIOKOPAIOMbC 6I0N0GIOHUM 3aKoHam. L]e
npu3e00ums 00 CYmmesux 8iOMiHHocmell y hyHKYioHy8anui no6yoosanux mooene. /lana cmamms
NPUCBAYEHA MAMPUYAM, 8 SKOCMI eneMeHmie Ol AKUX OOUPAomvCs eleMeHmMAapHi JI02IuHi
eleMeHmu, a came Oyiesi KOHCMaHmu ado CKiHYeHHI npeouxamu 008inbHOI apHocmi. B pobomi
docnidaceHo ocobnusocmi onepayii 0bepmarHs maxkux mampuysb. Bci ompumani pesynromamu
NPoiNIOCMPOBAHO HAOYHUMU NPUKIAOAMU.

Knrwuoei cnosa: ckinuennuii npeduxam, Oyneea mampuys, npeoOuUKamua Mampuys,
Ou3 1OHKYIs,, KOH IOHKYIS, 3anepeyeHHs, OpMO2OHANbHA JO2IYHA MAmMpuys, JAO2IYHULL CKAIAD,
00epmants 10214HOT Mampuyi.
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