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Abstract. Monitoring the health of structures consisting of fiber composites can be done in two 

ways, namely passively, by recording acoustic waves generated by cracks, impact damage, 
delamination and mechanical shear, and actively, by propagating diagnostic mechanical stress 
waves and interpreting parameters characterizing the dynamics of the wave propagation. This paper 
presents a methodology for numerical modeling of flexural wave propagation in a composite plate. 
In addition, based on the calculation results, recommendations are provided for the use of sensors 
for detecting damage in local volumes of fiber composite plates based on stress wave parameters. To 
improve the understanding of the real physical process of flexural wave propagation, a simple model 
is developed for simulating wave propagation in a plate with different types of boundary conditions. 
The simulation of waves propagating in the composite was performed using externally applied forces 
and moments. The results of numerical experiments were used to represent the passive damage 
growth, which was detected by active acoustic wave generation using piezo-ceramic actuators. 
Passive detection of acoustic waves was performed using a step function that modeled the acoustic 
emission from a propagating damage in a local volume of the composite material. A new method for 
acoustic emission source determination is also presented using the time dynamics of the dominant 
low-frequency components of the flexural wave mode detected by continuously distributed sensors. 

Key words: composites, flexural wave propagation, acoustic emission, damage registration, 
mechanical shear. 

Introduction. 
A frequently used technique for damage detection in composite structures is the 

analysis of the Lamb wave propagation dynamics in the cross-sectional plane [1, 2].  
An extension of this technique is the measurement of acoustic emission for monitoring 
local mechanical damage. Modeling of acoustic and flexural wave propagation is often 
performed for infinitely sized plates, since obtaining characteristic solutions for the 
problem of wave propagation in a locally confined medium is a complex mathematical 
problem. A promising approach in this case is the calculation of normal modes of a 
closed solution for the propagation of flexural waves in a fiber composite plate [3, 4]. 
Finite element methods are also used to model wave propagation. However, for this 
case, the computation time is usually long, and the normal representation of higher 
frequencies and modes is limited by the large number of elements used. 

Impact damage, such as out-of-plane strain source or delamination of the 
composite material, generates large flexural modes. The results of numerous 
experiments indicate that the source of flexural modes in the volume of composite 
samples are only those cracks that are located outside the vicinity of the middle plane. 
Therefore, the model presented in this study mainly deals with flexural mode acoustic 
emission signals from impact damage, delaminations and cracks that are not located in 
the mid-plane [5]. The glass-epoxy composite plate is modeled as quasi-isotropic, and 
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piezoelectric actuators and sensors are modeled on the plate to generate and receive 
waves.  

The aim of this model is to develop a mathematical tool for modeling wave 
propagation and to facilitate the design of sensors for measuring flexural waves. The 
sensor elements that are often used in experimental studies to structure a continuous 
sensor are connected in an N × N array, which results in the individual signals from the 
sensors being combined into 2N - 1 output arrays. For large array sizes, this approach 
significantly reduces the number of data acquisition instrument channels needed to 
monitor the health of a fiber composite structure. The optimal solution in these two 
approaches is that the continuous sensor is the simplest with a single data acquisition 
channel, while the array uses more channels to more accurately detect damage. 
Additional results of the study include a method for localizing the acoustic emission 
source. The localization technique is based on identifying the dominant low-frequency 
components of the bending wave. The set of characteristic components was identified 
based on the time characteristics of the stress measured by four different continuous 
sensors on four sides of a glass-epoxy plate with a simple support. 

Equations of motion and boundary conditions. 
The modeling of acoustic emission is based on the equation of motion for a simply 

supported quasi-isotropic glass-epoxy composite plate. The shape of the pulse of the 
force excitation of the load is stepwise. The step shape of the mechanical load allows 
simulating acoustic emission from a propagating damage. The final differential 
equation is  

( ) ( )
ab

tyxFwhtyxwD ,,,,4 +−=∇ ρ ,                                  (1)  

where  
F(x, y, t) = F1U(t)δ(x – x1)δ(y – y1) is the step function force; 
W is the deflection; 
ρ is the mass density; 
h is the plate thickness; 
a and b are the composite plate length and width. 
 The plate flexural rigidity is given as 
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After applying the Navier solution and using the orthogonalization property to 
separate the spatial and temporal variables, the time equation is obtained. After adding 
the modal damping, where each damping ratio is specified independently, the time 
equation can be written as  

mnmnmnmnmnmnmn Faaa =++ 22 ωωζ  ,                                 (3) 
where 

amn = f (Fmn, ωmn, ζmn, θ ); θ = tan–1[ζ(1 – ζ)0.5]. 
The spatial dependence of mechanical stresses in the volume of a composite plate 

can be specified using the equations 
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As a simple approximation for modeling a unidirectional active fiber composite 
layer bonded to a plate, the mechanical stress can be approximated using the average 
strain across the sensor network nodes 

s

heV
ε
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0 = ,                                                       (6) 

where 
ε1 is the average strain; 
εs is the permittivity. 

An analytical model was established for the active propagation of acoustic waves 
in the plate due to surface-bonded layers of fiber composite. The calculation method 
allowed us to obtain a closed solution for the propagation of waves in a local volume 
of the composite material. From the classical theory of vibration of plates, the equation 
of motion was derived in terms of the internal bending moments of the plate Mx, Mxy 
and My, and the moments due to the actuator mx and my, and then expressed in 
displacement form as 
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The moments associated with the nodes of the sensor network can be expressed 
as Heaviside step functions 
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where 
f (t) is an explicit function of time, which allows in this case to represent the impulse 
moment using a delta function. 

The next step of the calculation procedure was the analysis of discontinuous 
functions, the solutions of which described the set of mechanical displacements in the 
volume of the composite due to step excitation. For the momentum moment, the plate 
displacement is expressed in terms of the Fourier series (Navier solution) and mode 
summation, which gives the following 
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where  
F2 = f (ρ, h, a, b). 

The composite sample in the calculation model has a rectangular shape and is 
isotropic. The stress distribution inside the plate is assumed to be symmetrical about 
the neutral axis, and the plate bending creates a linear normal stress distribution. This 
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relationship assumes that the neutral axis coincides with the mid-plane of the plate. In 
addition, the mass and bending stiffness of the composite volume element are 
significantly less than those of the entire plate. The mechanical stress in the volume 
can be integrated to obtain the equivalent bending moment. 

The flexural wave number of a fiber composite plate and the corresponding 
bending wave velocity for a rectangular isotropic plate can be obtained from the 
equation of motion in polar coordinates and the subsequent Hankel transformation. The 
bending wave velocity field is dispersive. The wave propagation velocity with higher 
frequencies is greater than the velocity for lower frequencies. This velocity is defined 
as 
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where 
D = Eh3/[12(1 – ν2)] is the flexural stiffness of composite plate. 

A continuous Fourier transform is performed on the stress-time history obtained 
as a sum of responses from continuous sensors that are surface-attached to the fiber 
composite sample. The dispersion dependence of the power spectral density is plotted 
against frequency to determine the dominant flexural bandwidth. The results are used 
to determine the peak frequency, especially for the low-frequency components of the 
flexural mode. Wavelet analysis (scalegram) is then performed to determine and 
significantly narrow the time bandwidth where the peak amplitude flexural wave hits 
one part of the continuous sensors. 

The continuous wavelet transform x(t) is a time-domain signal processing method 
that is defined as 
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In equation (12), b is the translation indicating the local characteristics of the 
volume, a is the expansion or scale parameter, ψ (t) is the analysis wavelet, and ψ*(t) 
is the complex conjugate of ψ (t). The scale parameter a determines the frequency 
localization. The analysis wavelet ψ (t) must satisfy the admissibility condition: 
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where  
Ψ1(f) is the Fourier transform of ψ (t).  

Condition (13) is necessary to obtain the inverse wavelet transform. In this case, 
the Morlet wavelet is defined as 

( ) ( ) ( )2/exp2exp 2
0 ttfjt −⋅=Ψ π                             (14) 

( ) ( )[ ]2
0

22exp2 fft −−=Ψ π .                            (15) 
The use of the Morlet wavelet is a necessary condition for obtaining good 

selectivity of expansion and translation. In practice, the value f0 > 5 is used, which 
approximately corresponds to the boundary conditions of the first and second kind. It 
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is clear from the definition that the Fourier transform extracts periodic infinite waves 
from the analyzed function. In contrast, the wavelet transform analyzes the function 
only locally in fixed regions that are determined solely by the mother wavelet. 

Equations (14) and (15) are non-local in the general case. The value of Wg(a, b) 
at the point (a0, b0) depends on x(t) for any value of t. However, as follows from the 
conditions imposed on the form of the wavelet transform, the function Ψ (t) decays to 
zero at 1 and ±1. If we assume fast decay, i.e. the values of Ψ (t) are negligible outside 
the interval (tmin, tmax), the transform becomes local. Frequency localization can be 
determined for any region within the fiber composite volume when the wavelet 
transform is expressed through the Fourier transform: 
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Equation (16) describes the case for which localization depends on the expansion 
(scale) parameter a. The local resolution of the wavelet transform in time and frequency 
is determined by the duration and bandwidth of the analysis functions given by ∆t = 
a⋅tg and ∆f = ∆fg /a, where ∆tg and ∆fg are the duration and bandwidth of the wavelet 
base function, respectively. Thus, in the frequency domain, the wavelet transform has 
good resolution at low frequencies, and in the time domain, correspondingly, at high 
frequencies. This qualitative relationship for frequencies is more suitable for detecting 
transient signals. 

The wavelet transform as a signal decomposition tool cannot be directly compared 
with any time-frequency representation. However, there is a connection between 
expansion and frequency. The Morlet wavelet analysis corresponds to a functional 
dependence between the expansion parameter af and the signal frequency fx. This 
functional dependence can be defined by the relation 
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where 
fs is the signal sampling frequency; 
fw is the wavelet sampling frequency. 

The active wave generation and sensing simulation is performed using a model of 
the glass–epoxy composite plate. The verification of the computational model was 
performed, including the case of active wave propagation in the fiber composite using 
a surface-bonded actuator located in the center of a rectangular plate. The probing was 
assumed to be carried out in the presence of continuous and array sensors. The first 
100 vibration modes were used for the simulations, and the time step was 1 ms. A 
cross-array sensor architecture was used for the composite sample. The initial analysis 
was performed for the case of active wave propagation at times of 10–360 ms. Acoustic 
wave propagation was observed under the condition of antisymmetric Lamb waves 
(flexural waves) generated by an actuator located in the center of a glass and epoxy 
plate. 

The methodology used to localize the simulated fault location consisted of several 
computational steps that simulated the measurement process. The elements of the set 
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of voltage-time measurement procedures for four different continuous sensors located 
on the four sides of the plate were determined separately. Each continuous sensor was 
modeled as a system of three sensors connected in series to produce a single output. 
Power spectral density and frequency plots are plotted to determine the dominant lower 
frequency components of the flexural wave and the corresponding peak frequency. The 
low frequency component corresponded to the main energy source in the system. 

The corresponding calculations for the wavelet scalegram were performed to 
narrow the initial time interval when the corresponding peak frequency could reach the 
continuous sensors. As a result of model experiments, the time when the peak bending 
wave reached the continuous sensor was estimated. The corresponding flexural wave 
propagation velocity for the peak frequency is then calculated. In this way, the relative 
distance xi, i = 1, 2, 3 (in percent of the fiber composite specimen length) is calculated 
as a function of the orientation of the continuous sensors and the simulated local 
damage location. The time ti for the flexural wave to reach these sensors for a fixed 
flexural wave frequency ωi is then estimated. The simulations were performed for 
composite specimens (C1, C2) whose densities differed by a factor of 1.32 and 1.73, 
respectively. Table 1 presents the calculation details. 

 
Table 1 – Details of damage actual locations  

C1 C2 
xi ωi, 103 Hz ti, 10-3 s xi ωi, 103 Hz ti, 10-3 s 

0.152 5.863 1.47 0.186 5.863 2.01 
0.344 5.863 1.95 0.411 5.863 2.85 
0.521 6.018 2.19 0.584 6.018 3.69 
0.642 6.018 2.85 0.723 6.018 4.15 
0.815 8.214 3.54 0.905 8.214 6.24 

 
Summary and conclusions. 
The developed model allowed to calculate the details of the array of mechanical 

damages with active wave generation and passive probing. Optimization of 
calculations allowed to reduce the number of data collection channels required to detect 
damages represented by acoustic emissions or high deformations. The modeling results 
can be used for active monitoring of mechanical damages in composite plate-type 
structures. Analysis of bending waves has great potential for finding the location of 
damages by acoustic emissions from passive continuous sensors. 
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