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Abstract. Introductory speech on the research topic: The development of electric power 
systems is accompanied by the continuous growth of electricity generation and consumption, along 
with the increasing complexity of electric network configurations. It is becoming difficult to manage 
the modes of electrical systems. When managing system modes, it is necessary to calculate steady-
state modes. As a result of the load flow solve, the permissible values of the mode parameters are 
determined. Maintaining permissible nodal voltage levels within the system becomes a priority. 
Significant voltage losses are caused by the passive parameters of transformers. Therefore, it is 
necessary to develop an efficient method for calculating steady-state modes to ensure effective voltage 
control. 

The purpose of scientific research: Development and realization of the Q-method for 
controlling nodal voltages in the electric power system. A new computational method has been 
developed for solving the nonlinear algebraic equations of steady-state modes in systems with PU-
type station nodes. The voltage levels at the nodes of the system are evaluated, taking into account 
the passive parameters of transformers. By applying the Q-method, permissible levels of nodal 
voltages are maintained through change in reactive power and phase angles of complex voltages, 
improving the system’s economic efficiency. 

Description of scientific and practical significance of the work: Scientific value of the work: 
The research introduces a computational Q-method for solving mixed equations of steady-state 
modes in electric systems with PQ- and PU-type station nodes. Practical significance: The method 
enables the control of node voltage levels in electric system while ensuring economic efficiency. 

Description of the research methodology: Considering the continuous growth of electricity 
consumption, the complexity of network configurations, matrix theory, numerical methods for solving 
nonlinear algebraic equations of stabilized modes, voltage and reactive power modes, and voltage 
regulation measures, the Q-method for node voltage regulation in electric power systems has been 
developed. 

Main results, conclusions of the research work: The study was conducted on a macromodel 
of the Armenian electric power system. The analysis indicates that the proposed Q-method is 
applicable to transmission electrical networks. The method evaluates changes in reactive power and 
phase angles of complex voltages at station nodes, improving system economic efficiency. 

The value of the conducted research (what contribution of this work to the relevant branch of 
knowledge): The presented method expands the scope of application for controlling and managing 
voltage levels at station nodes in operational mode calculations and analyses. 

Practical significance of the results of work: The developed method allows solving problems of 
multi-mode control, analyzing and detecting violations of technical voltage limitations, and solving 
voltage regulation problems. 

Keywords: electric power system, nodal voltage, transformer, reactive power, method, matrix. 
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Introduction.  

The continuous changes in electrical energy consumption and the configurations 

of electrical networks complicate the management of electric power systems. The 

diverse mode problems necessitate the use of new methods for modeling steady-state 

modes.. Voltage mode in the electrical system significantly influence the transmission 

capacity of networks, the level of stability, losses, and the quality of electrical energy. 

Managing modes based on voltage and reactive power is a complex task. Voltage in 

the electrical system is constantly changing. The causes of voltage changes may 

include variations in the active and reactive loads of electrical consumers, voltage and 

reactive power of power plants, and changes in the passive parameters of elements in 

the network configuration (such as transmission lines and transformers). Therefore, the 

challenge arises to maintain the permissible voltage levels in the nodes of the electrical 

system. For the management of nodal voltages in the system, it becomes necessary to 

improve computational methods for solving non-linear algebraic equations of steady-

state modes for PQ and PU type nodal points [1, 2] The integration of the method with 

the economic efficiency of the system and voltage regulation means is particularly 

emphasized. 

Literature review. The system of non-linear algebraic equations for the steady-

state mode of electric power systems is presented in Z-form [1–8]: 

�̇�𝑈 = �̇�𝑈0Б + 𝑍𝑍 ∙ 𝐼𝐼 ̇     (1) 

(1) the system is expressed as follows: 

�̇�𝑈 = 𝑍𝑍 ∙ 𝐼𝐼′̇      (2) 

where: 

𝑍𝑍- is the nodal impedance matrix of the circuit. 

𝑍𝑍 = 𝑌𝑌–1      (3) 

𝑌𝑌-is the nodal admittance matrix of the circuit. 

𝐼𝐼′̇- represents the complex currents of the independent nodes in the electrical 

system. 

On the other hand, we obtain: 
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𝐼𝐼′̇ = �̂�𝑆
𝑈𝑈�

–𝑌𝑌0 ∙ 𝑈𝑈0     (4) 

By substituting expression (4) into equation (2) and applying the following 

notation: 

�̇�𝑈0Б = 𝑍𝑍 ∙ 𝑌𝑌0 ∙ 𝑈𝑈0     (5) 

We derive the following matrix equation: 

�̇�𝑈 =– �̇�𝑈0Б + 𝑍𝑍 ∙ �̂�𝑆
𝑈𝑈�

     (6) 

Writing equation (6) for the first node, we obtain: 

�̇�𝑈1 = 𝑍𝑍11 ∙
𝑆𝑆1�

𝑈𝑈1�
– ( �̇�𝑈0Б–𝑍𝑍12 ∙ 𝐼𝐼2̇ 

′+. . . +𝑍𝑍1𝑀𝑀 ∙ 𝐼𝐼�̇�𝑀
′)  (7) 

Let us apply the following notation: 

�̇�𝑈1
′ =– ( �̇�𝑈0Б–𝑍𝑍12 ∙ 𝐼𝐼2̇ 

′+. . . +𝑍𝑍1𝑀𝑀 ∙ 𝐼𝐼�̇�𝑀
′)   (8) 

Considering the notation in (8), equation (7) takes the following form: 

�̇�𝑈1 = 𝑍𝑍11 ∙
𝑆𝑆1�

𝑈𝑈1�
+�̇�𝑈1

′     (9) 

For the k-th node, we derive: 

�̇�𝑈𝑘𝑘 = �̇�𝑈𝑘𝑘0–𝑍𝑍𝑘𝑘𝑘𝑘 ∙
𝑆𝑆𝑘𝑘�

𝑈𝑈𝑘𝑘�
      (10) 

where: 

𝑈𝑈𝑘𝑘0 = 𝑈𝑈0Б–∑ 𝑍𝑍𝑘𝑘𝑘𝑘 ∙
𝑆𝑆𝑡𝑡�

𝑈𝑈𝑡𝑡�
𝑀𝑀
𝑘𝑘=1
𝑘𝑘≠𝑘𝑘

        (11) 

For PU-type nodes, the equations to be solved are also written in the following 

forms: 

𝑄𝑄𝑖𝑖 =–∑ |𝑉𝑉𝑖𝑖| ∙ |𝑉𝑉𝑘𝑘| ∙ |𝑉𝑉𝑖𝑖𝑘𝑘| ∙ sin (𝜃𝜃𝑖𝑖𝑘𝑘– 𝛿𝛿𝑖𝑖 + 𝛿𝛿𝑘𝑘)𝑛𝑛
𝑘𝑘=1   (12) 

ei2 + fi2 = |Vi|2     (13) 

𝑒𝑒𝑖𝑖 = �|Vi|2–𝑓𝑓𝑖𝑖2     (14) 

where:  

𝑒𝑒𝑖𝑖- represents the real component of the complex voltage 𝑉𝑉�̇�𝚤, 

𝑓𝑓𝑖𝑖- represents the imaginary component of the complex voltage 𝑉𝑉�̇�𝚤. 

The system (1) of equations is solved for PQ-type nodes, representing loads and 

power plants. Equations (10), (12), and (13) are solved for PU-type nodes of power 
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plants. The solution methods for these equations do not always yield acceptable results. 

From this perspective, it is necessary to develop new computational methods for 

solving mixed equations of steady-state modes, which can be applied to the study of 

electrical systems. The new method is significant because it ensures the permissible 

voltage levels at the nodes of modernelectric power systems and enhances the 

economic efficiency of the system. 

Aim of the Research. For the control of nodal voltages in an electric power 

system, it is proposed to use: 

1. Calculation of a steady-state mode with PQ-type nodes considering the passive 

parameters of transformers. 

2. Q-method for PU-type nodes (reactive power method).. 

3. A criterion for assessing the economic efficiency of the electric power system. 

Main Body. Let us assume that the electric power system (EPS) consists of M + 

1 nodes (see Fig. 1.). 
 

 
Figure 1 – Equivalent scheme of the EPS with the Z-form 

 

It is supposed that the powers of the power plant nodes (0, 1, 2,..., Г) and load 

nodes (Г + 1, Г + 2,..., Г + Н = М) are given by PQ-type. 

The electric power system consists of M+1 nodes. The node with index «0» is 

selected as the slack node. In this case, the equation of state of the electrical system in 

the Z-form takes the following form [9]: 
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�̇�𝑈1 = �̇�𝑈0Б +  𝑍𝑍11 ∙ 𝐼𝐼1̇ + 𝑍𝑍12 ∙ 𝐼𝐼2̇ +. . . +𝑍𝑍1𝑀𝑀 ∙ 𝐼𝐼�̇�𝑀 ,
�̇�𝑈2 = �̇�𝑈0Б + 𝑍𝑍21 ∙ 𝐼𝐼1̇ + 𝑍𝑍22 ∙ 𝐼𝐼2̇ +. . . +𝑍𝑍2𝑀𝑀 ∙ 𝐼𝐼�̇�𝑀,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
�̇�𝑈𝑀𝑀 = �̇�𝑈0Б + 𝑍𝑍𝑀𝑀1 ∙ 𝐼𝐼1̇ + 𝑍𝑍𝑀𝑀2 ∙ 𝐼𝐼�̇�𝑀+. . . +𝑍𝑍𝑀𝑀𝑀𝑀 ∙ 𝐼𝐼�̇�𝑀 . ⎭

⎬

⎫
  

 (15) 

where �̇�𝑈0Б, �̇�𝑈1, �̇�𝑈2,..., �̇�𝑈𝑀𝑀-are complex voltages of nodes 0, 1,..., M of the electrical 

system, 

  𝐼𝐼1̇, 𝐼𝐼2̇ ,...,𝐼𝐼�̇�𝑀-are complex currents of nodes 1,2,..., M of the electrical system, 

  𝑍𝑍12,..., 𝑍𝑍1𝑀𝑀, 𝑍𝑍21,..., 𝑍𝑍2𝑀𝑀,..., 𝑍𝑍𝑀𝑀1- are mutual impedances of independent nodes 

of the electrical system, 

  𝑍𝑍11, 𝑍𝑍22,..., 𝑍𝑍𝑀𝑀𝑀𝑀- are self-impedances of independent nodes 1,2,..., M of the 

electrical system. 

The system of equations (15) is also represented in the following form: 

𝑈𝑈𝚤𝚤̇ = 𝑈𝑈0Б + ∑ 𝑍𝑍𝑖𝑖𝑖𝑖 ∙ 𝐼𝐼�̇�𝚥𝑀𝑀
𝑖𝑖=1 , 𝑖𝑖 = 1,2, . . . ,𝑀𝑀   (16) 

The nodal equation of the electrical system (15) in a compact form takes the form: 

�̇�𝑈 = �̇�𝑈0Б + 𝑍𝑍 ∙ 𝐼𝐼 .̇     (17) 

where �̇�𝑈0Б is a multidimensional slack voltage vector of the electrical system, 

  𝑍𝑍 – nodal complex matrix of self and mutual impedances, due to the longitudinal 

and transverse passive parameters of power lines, 

  �̇�𝑈 – multidimensional vector of the complex voltage of independent nodes of the 

electrical system, 

  𝐼𝐼-̇multidimensional vector of the complex current of independent nodes of the 

electrical system. 

Let’s represent the equivalent scheme of the EPS (Fig. 1.) in the form (Fig. 2.). 

Let us write the matrix equation of the steady-state for the equivalent scheme of 

the electric power system presented in (Fig. 2.), we will have [10]: 

�̇�𝑈𝑇𝑇𝑇𝑇 = �̇�𝑈0Б + 𝑍𝑍 ∙ 𝐼𝐼�̇�𝑇𝑇𝑇     (18) 

where 

�̇�𝑈𝑇𝑇𝑇𝑇 multidimensional complex voltages vector of electrical system independent 

nodes, taking into account the passive parameters of transformers, 
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𝐼𝐼�̇�𝑇𝑇𝑇- multidimensional complex currents vector of electrical system independent 

nodes, taking into account the passive parameters of transformers. 

 

 
Figure 2 – Equivalent scheme EPS in Z-form, taking into account the 

parameters of transformers 

 

For the application of the Q-method for controlling nodal voltages in an electric 

power system, PQ-type nodes are converted into PU-type nodes. 

From matrix equations (16) and (17), we obtain: 

��̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇� ≠ ��̇�𝑈𝑖𝑖�      (19) 

where 

�̇�𝑈𝑇𝑇𝑇𝑇 – is the multidimensional vector of the complex voltages of the independent 

nodes of the electric system, considering the passive parameters of transformers. 

To satisfy condition (19), it is required to adjust the value of �̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇 voltage by ∆�̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇, 

i. e. 

��̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇 + ∆�̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇� = ��̇�𝑈𝑖𝑖�     (20) 

In this case, the increment of the complex voltage ∆�̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇 is determined from 

expression (18) as follows. Voltage changes are made, causing a change in current,  

i. e., 
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�̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇 + ∆�̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇 = �̇�𝑈0Б + ∑ 𝑍𝑍𝑖𝑖𝑖𝑖 ∙ (𝐼𝐼𝚥𝚥̇
𝑇𝑇𝑇𝑇

+ ∆𝐼𝐼�̇�𝑖𝑇𝑇𝑇𝑇)𝑀𝑀
𝑖𝑖=1   (21) 

from where 

∆�̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇 = ∑ 𝑍𝑍𝑖𝑖𝑖𝑖 ∙ ∆𝐼𝐼�̇�𝑖𝑇𝑇𝑇𝑇𝑀𝑀
𝑖𝑖=1      (22) 

Substituting expression (22) into the left-hand side of formula (20) and 

performing the corresponding transformations, we get: 

��̇�𝑈𝑖𝑖0𝑇𝑇𝑇𝑇 + 𝑍𝑍𝑖𝑖𝑖𝑖 ∙ ∆𝐼𝐼�̇�𝑖𝑇𝑇𝑇𝑇� = ��̇�𝑈𝑖𝑖�     (23) 

where 

�̇�𝑈𝑖𝑖0𝑇𝑇𝑇𝑇 = �̇�𝑈0Б + ∑ 𝑍𝑍𝑖𝑖𝑖𝑖 ∙ 𝐼𝐼�̇�𝑖𝑇𝑇𝑇𝑇
𝑀𝑀
𝑖𝑖=1
𝑖𝑖≠𝑖𝑖

    (24) 

Let us represent the left-hand side of expression (23) in the following form: 

�(𝑈𝑈𝑎𝑎𝑖𝑖0𝑇𝑇𝑇𝑇 + 𝑅𝑅𝑖𝑖𝑖𝑖 ∙ ∆𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇–𝑋𝑋𝑖𝑖𝑖𝑖 ∙ ∆𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇) + 𝑗𝑗(𝑈𝑈𝑇𝑇𝑖𝑖0𝑇𝑇𝑇𝑇 + 𝑅𝑅𝑖𝑖𝑖𝑖 ∙ ∆𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇 + 𝑋𝑋𝑖𝑖𝑖𝑖 ∙ ∆𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇)� = ��̇�𝑈𝑖𝑖� (25) 

where 

𝑈𝑈𝑎𝑎𝑖𝑖0𝑇𝑇𝑇𝑇 = 𝑅𝑅𝑒𝑒(�̇�𝑈𝑖𝑖0𝑇𝑇𝑇𝑇)      (26) 

𝑈𝑈𝑇𝑇𝑖𝑖0𝑇𝑇𝑇𝑇 = 𝐼𝐼𝐼𝐼(�̇�𝑈𝑖𝑖0𝑇𝑇𝑇𝑇)      (27) 

∆𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇 = 𝑅𝑅𝑒𝑒�∆𝐼𝐼�̇�𝑖𝑇𝑇𝑇𝑇�      (28) 

∆𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇 = 𝐼𝐼𝐼𝐼�∆𝐼𝐼�̇�𝑖𝑇𝑇𝑇𝑇�      (29) 

Rewriting expression (25) in the following form, we obtain: 

(𝑈𝑈𝑎𝑎𝑖𝑖0𝑇𝑇𝑇𝑇 + 𝑅𝑅𝑖𝑖𝑖𝑖 ∙ ∆𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇–𝑋𝑋𝑖𝑖𝑖𝑖 ∙ ∆𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇)2 + (𝑈𝑈𝑇𝑇𝑖𝑖0𝑇𝑇𝑇𝑇 + 𝑅𝑅𝑖𝑖𝑖𝑖 ∙ ∆𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇 + 𝑋𝑋𝑖𝑖𝑖𝑖 ∙ ∆𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇)2 =  (�̇�𝑈𝑖𝑖)2 (30) 

Performing transformations in expression (30) and neglecting the quadratic terms 

of current change ∆𝐼𝐼2, we get: 

𝑎𝑎𝑎𝑎𝑖𝑖𝑈𝑈 ∙ ∆𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇 + 𝑎𝑎𝑇𝑇𝑖𝑖𝑈𝑈 ∙  ∆𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇 = 𝐴𝐴𝑖𝑖𝑈𝑈    (31) 

where  𝑎𝑎𝑎𝑎𝑖𝑖𝑈𝑈 , 𝑎𝑎𝑇𝑇𝑖𝑖𝑈𝑈  and 𝐴𝐴𝑖𝑖𝑈𝑈 the coefficients are determined as follows:. 

𝑎𝑎𝑎𝑎𝑖𝑖𝑈𝑈 = 2 ∙ � 𝑅𝑅𝑖𝑖𝑖𝑖 ∙ 𝑈𝑈𝑎𝑎𝑖𝑖0𝑇𝑇𝑇𝑇 + 𝑋𝑋𝑖𝑖𝑖𝑖 ∙ 𝑈𝑈𝑇𝑇𝑖𝑖0𝑇𝑇𝑇𝑇 �   (32) 

𝑎𝑎𝑇𝑇𝑖𝑖𝑈𝑈 = 2 ∙ �𝑅𝑅𝑖𝑖𝑖𝑖 ∙ 𝑈𝑈𝑇𝑇𝑖𝑖0𝑇𝑇𝑇𝑇 –𝑋𝑋𝑖𝑖𝑖𝑖 ∙ 𝑈𝑈𝑎𝑎𝑖𝑖0𝑇𝑇𝑇𝑇 �    (33) 

𝐴𝐴𝑖𝑖𝑈𝑈 = (�̇�𝑈𝑖𝑖)2– (𝑈𝑈𝑖𝑖0𝑇𝑇𝑇𝑇)2     (34) 

The resulting equation (31) has two unknowns: the active component of current 

change ∆𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇 and the reactive component ∆𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇. To determine these components, it is 

necessary to construct a second equation. 



SWorldJournal                                                                                                                        Issue 29 / Part 1 

 ISSN 2663-5712                                                                                                                                                                                    www.sworldjournal.com 42 

Since the node is assumed to be of PU type, for the given active power of the 

node, we can write the following formula: 

𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑅𝑅𝑒𝑒[��̇�𝑈𝑖𝑖0𝑇𝑇𝑇𝑇 + 𝑍𝑍𝑖𝑖𝑖𝑖 ∙ ∆𝐼𝐼�̇�𝑖𝑇𝑇𝑇𝑇� ∙ �𝐼𝐼𝑖𝑖𝑇𝑇𝑇𝑇 + ∆𝐼𝐼𝑖𝑖𝑇𝑇𝑇𝑇�]  (35) 

where  𝐼𝐼𝑖𝑖𝑇𝑇𝑇𝑇 = 𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇– 𝑗𝑗𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇, ∆𝐼𝐼𝑖𝑖𝑇𝑇𝑇𝑇 = ∆𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇– 𝑗𝑗∆𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇- conjugate complex values of currents. 

Performing the appropriate transformations in equation (35), neglecting the 

quadratic terms of current change ∆𝐼𝐼2, and taking the real part of the equation, we 

obtain: 

𝑎𝑎𝑎𝑎𝑖𝑖𝑃𝑃 ∙ ∆𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇 + 𝑎𝑎𝑇𝑇𝑖𝑖𝑃𝑃 ∙  ∆𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇 = 𝐴𝐴𝑖𝑖𝑃𝑃    (36) 

where  𝑎𝑎𝑎𝑎𝑖𝑖𝑃𝑃 , 𝑎𝑎𝑇𝑇𝑖𝑖𝑃𝑃  and 𝐴𝐴𝑖𝑖𝑃𝑃 the coefficients are determined by the following expressions: 

𝑎𝑎𝑎𝑎𝑖𝑖𝑃𝑃 = �𝑈𝑈𝑎𝑎𝑖𝑖0𝑇𝑇𝑇𝑇 + 𝑅𝑅𝑖𝑖𝑖𝑖 ∙ 𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇 + 𝑋𝑋𝑖𝑖𝑖𝑖 ∙ 𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇�   (37) 

𝑎𝑎𝑇𝑇𝑖𝑖𝑃𝑃 = �𝑈𝑈𝑇𝑇𝑖𝑖0𝑇𝑇𝑇𝑇 + 𝑅𝑅𝑖𝑖𝑖𝑖 ∙ 𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇–𝑋𝑋𝑖𝑖𝑖𝑖 ∙ 𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇�   (38) 

𝐴𝐴𝑖𝑖𝑃𝑃 = 𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠–𝑃𝑃𝑖𝑖      (39) 

𝑃𝑃𝑖𝑖 = 𝑈𝑈𝑇𝑇𝑖𝑖0𝑇𝑇𝑇𝑇 ∙ 𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇 + 𝑈𝑈𝑇𝑇𝑖𝑖0𝑇𝑇𝑇𝑇 ∙ 𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇    (40) 

As a result, we obtain the following system of equations: 

𝑎𝑎𝑎𝑎𝑖𝑖𝑈𝑈 ∙ ∆𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇 + 𝑎𝑎𝑇𝑇𝑖𝑖𝑈𝑈 ∙  ∆𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇 = 𝐴𝐴𝑖𝑖𝑈𝑈,
𝑎𝑎𝑎𝑎𝑖𝑖𝑃𝑃 ∙ ∆𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇 + 𝑎𝑎𝑇𝑇𝑖𝑖𝑃𝑃 ∙  ∆𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇 = 𝐴𝐴𝑖𝑖𝑃𝑃 .

�    (41) 

Representing the system of equations (41) in matrix form, we obtain: 

�
𝑎𝑎𝑎𝑎𝑖𝑖𝑈𝑈  𝑎𝑎𝑇𝑇𝑖𝑖𝑈𝑈

𝑎𝑎𝑎𝑎𝑖𝑖𝑃𝑃  𝑎𝑎𝑇𝑇𝑖𝑖𝑃𝑃
� ∙ �

∆𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇

∆𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇
� = �

𝐴𝐴𝑖𝑖𝑈𝑈

𝐴𝐴𝑖𝑖𝑃𝑃
�     (42) 

From matrix equation (42), determine the active and reactive components of 

current changes. 

�
∆𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇

∆𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇
� = �

𝑎𝑎𝑎𝑎𝑖𝑖𝑈𝑈  𝑎𝑎𝑇𝑇𝑖𝑖𝑈𝑈

𝑎𝑎𝑎𝑎𝑖𝑖𝑃𝑃  𝑎𝑎𝑇𝑇𝑖𝑖𝑃𝑃
�

–1

∙ �
𝐴𝐴𝑖𝑖𝑈𝑈

𝐴𝐴𝑖𝑖𝑃𝑃
�     (43) 

Substituting the current changes into formula (23), determine the magnitudes of 

the node’s complex voltage �̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇 and argument 𝜓𝜓𝑈𝑈𝑖𝑖𝑇𝑇𝑇𝑇. 

𝜓𝜓𝑈𝑈𝑖𝑖𝑇𝑇𝑇𝑇 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈𝑟𝑟𝑟𝑟
𝑇𝑇𝑟𝑟

𝑈𝑈𝑎𝑎𝑟𝑟
𝑇𝑇𝑟𝑟     (44) 

In this case, the reactive power of the node is determined by the following 

formula: 

𝑄𝑄𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐼𝐼𝐼𝐼��̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇 ∙ �𝐼𝐼𝑖𝑖𝑇𝑇𝑇𝑇 + ∆𝐼𝐼𝑖𝑖𝑇𝑇𝑇𝑇��    (45) 
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Performing certain transformations in formula (45) and taking the imaginary part, 

we obtain: 

𝑄𝑄𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 =–𝑈𝑈𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇 ∙ �𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇 + ∆𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇�+.𝑈𝑈𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇 ∙ (𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇 + ∆𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇)   (46) 

The iterative calculation process is organized by the following expression: 

(�̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇)𝜗𝜗+1 = (�̇�𝑈𝑖𝑖0𝑇𝑇𝑇𝑇)𝜗𝜗 + 𝑍𝑍𝑖𝑖𝑖𝑖 ∙ (∆𝐼𝐼�̇�𝑖𝑇𝑇𝑇𝑇)𝜗𝜗   (47) 

where   

𝜗𝜗-is the iteration number. 

The following condition is chosen as the criterion for completing the iterative 

calculation process: 

���̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇�
𝜗𝜗+1–𝑈𝑈𝚤𝚤̇ � ≤ 𝜀𝜀∆𝑈𝑈𝑟𝑟,

(𝑎𝑎𝑎𝑎𝑎𝑎𝜑𝜑𝑖𝑖𝑇𝑇𝑇𝑇)𝜗𝜗+1 ∈ ∆𝑎𝑎𝑎𝑎𝑎𝑎𝜑𝜑𝑖𝑖𝑑𝑑 .
�     (48) 

where 

𝜀𝜀∆𝑈𝑈𝑟𝑟-is the convergence criterion, 

∆𝑎𝑎𝑎𝑎𝑎𝑎𝜑𝜑𝑖𝑖𝑑𝑑-is the range of desired changes in the tangent of the node’s angle. 

The relative magnitude of changes in approximate active power losses in the 

electrical system can be estimated by the following formula [11]: 

∆П𝑃𝑃 = П𝑃𝑃 ∙ (1– 0.02 ∙ 𝐾𝐾𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛)    (49) 

where 

𝐾𝐾𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛- is the coefficient of increase in voltage level at stations nodes. 

The changes in voltage and reactive power at nodes of the stations can be 

estimated using the Euclidean norm of the vectors [12], i. e. 

‖∆U𝑇𝑇𝑇𝑇‖2 = �∑ �∆𝑈𝑈𝑖𝑖𝑇𝑇𝑇𝑇�
2𝑀𝑀

𝑖𝑖=1     (50) 

�∆𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠�2 = �∑ �∆𝑄𝑄𝑖𝑖𝑇𝑇𝑇𝑇�
2𝑀𝑀

𝑖𝑖=1     (51) 

The study was carried out on the macromodel of the Armenian EPS. The simple 

iteration method is used to solve the steady-state equations. The results are presented 

in tables. The Hrazdan Thermal Power Plant (index «0») is represented as the slack 

node, the Yerevan Thermal Power Plant (index «1»), the Armenian Nuclear Power 

Plant (index «2») are the stations nodes. 
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Table 1 – Mode parameters of PQ-type nodes 

node, i 𝑃𝑃𝑖𝑖, MW 𝑄𝑄𝑖𝑖, MVAr �𝑈𝑈𝚤𝚤̇ �, kV 𝜓𝜓𝑈𝑈𝑖𝑖, ° 𝐼𝐼𝑎𝑎𝑖𝑖, kA 𝐼𝐼𝑇𝑇𝑖𝑖, kA 𝑎𝑎𝑎𝑎𝑎𝑎𝜑𝜑𝑖𝑖 𝑎𝑎𝑐𝑐𝑐𝑐𝜑𝜑𝑖𝑖 
0   220 0     
1 240 148 211.974 -1.6777 0.6635 -0.3862 0.61 0.85 
2 390 241 214.6895 -0.7986 1.0553 -0.6369 0.61 0.85 
3 867 650 210.517 -2.262 -2.4384 1.6967 0.74 0.8 
4 585 439 210.6054 -2.1348 -1.6418 1.1495 0.75 0.8 
 

Table 2 – Mode parameters of PQ-type nodes in the presence of passive 

parameters of transformers 

node, i 𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠, MW 𝑄𝑄𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 , MVAr ��̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇�, kV 𝜓𝜓𝑈𝑈𝑖𝑖𝑇𝑇𝑇𝑇, ° 𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇, kA 𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇, kA 𝑎𝑎𝑎𝑎𝑎𝑎𝜑𝜑𝑖𝑖𝑇𝑇𝑇𝑇 𝑎𝑎𝑐𝑐𝑐𝑐𝜑𝜑𝑖𝑖𝑇𝑇𝑇𝑇 
0   220 0     
1 239.1444 119.9535 206.9752 -1.5842 0.676 -0.3164 0.5 0.89 
2 388.2173 182.8176 208.9606 -0.6325 1.0779 -0.4937 0.47 0.9 
3 873.2892 808.6308 206.3364 -2.2068 -2.528 2.1682 0.92 0.73 
4 588.5188 545.8148 205.559 -2.0632 -1.7064 1.4735 0.92 0.73 
 

Q-method 

Table 3 – Mode parameters of PU-type nodes 

node, i 𝑃𝑃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠, MW 𝑄𝑄𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 , MVAr ��̇�𝑈𝑖𝑖𝑇𝑇𝑇𝑇�, kV 𝜓𝜓𝑈𝑈𝑖𝑖𝑇𝑇𝑇𝑇, ° 𝐼𝐼𝑎𝑎𝑖𝑖𝑇𝑇𝑇𝑇, kA 𝐼𝐼𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇, kA 𝑎𝑎𝑎𝑎𝑎𝑎𝜑𝜑𝑖𝑖𝑇𝑇𝑇𝑇 𝑎𝑎𝑐𝑐𝑐𝑐𝜑𝜑𝑖𝑖𝑇𝑇𝑇𝑇 
0   220 0     
1 239.1444 126.6430 211.9838 8.4941 0.6960 -0.2452 0.52 0.88 
2 388.2173 197.4205 214.8231 14.9249 0.7586 -0.3476 0.5 0.89 
 

Q-method 

Table 4 – Coefficients of PU-type nodes 

node, i 𝑎𝑎𝑎𝑎𝑖𝑖𝑈𝑈  
Ω∙ kV 

𝑎𝑎𝑇𝑇𝑖𝑖𝑈𝑈  
Ω∙ kV 

𝐴𝐴𝑖𝑖𝑈𝑈 
𝑘𝑘𝑉𝑉2 

𝑎𝑎𝑎𝑎𝑖𝑖𝑃𝑃  
Ω∙ kA 

𝑎𝑎𝑇𝑇𝑖𝑖𝑃𝑃  
Ω∙ kA 

𝐴𝐴𝑖𝑖𝑃𝑃 
MW 

1 550.4698 -1679.6 -4.1662 209.1193 26.1641 100.9185 
2 1059.1 -2466.7 -58.0189 206.9344 42.5407 249.9835 

 

Conclusions. 

1. The Q-method for controlling node voltages in the electrical power system 

ensures an acceptable voltage level by varying reactive powers and the angles of 

complex voltages: ∆𝑄𝑄1𝑠𝑠𝑠𝑠𝑠𝑠 = 5.57%, ∆𝜓𝜓𝑈𝑈1𝑇𝑇𝑇𝑇 = 10.0783°, ∆𝑄𝑄2𝑠𝑠𝑠𝑠𝑠𝑠 = 7.98%, ∆𝜓𝜓𝑈𝑈2𝑇𝑇𝑇𝑇 =

15.5574°. 

2. The coefficient of voltage increase in the electrical power system nodes 

is:𝐾𝐾𝑛𝑛𝑛𝑛𝑑𝑑𝑛𝑛=2.62%, with the variation in reactive power being:�∆𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠�2=7.34%, and the 
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relative reduction in active power losses: ∆П𝑃𝑃 = 5.24%. 

3. The Q method allows to control the voltage level in the nodes of the electric 

power system by regulating the change in reactive power and increasing the economic 

efficiency of the system. 

Prospects for further research. 

1. Study of the Q-method in system-forming electric networks. 

2. Research on voltage regulation in transmission networks with economic 

efficiency. 
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