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Abstract. Today, science is faced with an increasing number of problems related to 

computerization. It is the needs of computer information processing that require the study of the 
possibilities of matrix representation of graphs and, as a result, matrix representation of all possible 
transformations of graphs. The matrix implementation of operations on graphs has its own 
characteristics depending on the type of each specific graph. Because of this, obviously, the 
procedure for their implementation is not universal. A graph can be fully characterized by the 
adjacency matrix. Therefore, for the matrix implementation of the considered basic unary operations 
on graphs, it is necessary to use the apparatus of ordinary arithmetic matrix operations described in 
linear algebra. 

Keywords: directed and undirected graph, adjacency matrix, operation on graphs, arithmetic 
operations on matrices. 

Introduction. 

When studying a system of objects connected by some arbitrary types of 

relationships, both directed and undirected graphs can be used. Each such system is an 

ordered collection of elements with which certain changes can occur. Each such 

specific system can be represented graphically as a graph or in digital format as an 

adjacency matrix or incidence matrix of such a graph. n any case, changes in the 

elements of the system are reflected by unary operations on the vertices or edges of the 

corresponding graph. The graphical implementation of such operations has already 

been well studied and described [1]. But computer processing of information involves 

its digital representation in matrix form. Algebraic matrix apparatus is also widely 

represented in mathematical research [2]. This article aims to establish a 

correspondence between known operations on ordinary matrices and unary operations 

on elements of an arbitrary graph. In this way, a transition from a graphical to a digital 

method of not only representing, but also processing various information can be made. 

Main text. 

Let’s consider an directed graph 𝐺𝐺1 (Fig. 1). 
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Figure 1 – Directed graph 𝑮𝑮𝟏𝟏 

Author's development 
 

The adjacency matrix corresponding to this graph will be as follows (in tabular or 

in the usual matrix form): 

 
 

Deleting a vertex from a graph entails deleting all edges incident to it, which 

results in deleting all connections of this object or node to other objects or nodes. This 

means that when deleting a vertex 𝑣𝑣𝑖𝑖 from the adjacency matrix, the i-th row and i-th 

column must be deleted. In this regard, the algorithm for performing the operation of 

deleting a vertex 𝑣𝑣𝑖𝑖 from a graph in a matrix representation is similar to the algorithm 

for constructing a minor 𝑀𝑀𝑖𝑖𝑖𝑖 for the adjacency matrix of this graph. For example, 

suppose that we want to delete vertex 𝑣𝑣4 from graph 𝐺𝐺1. This is equivalent to 

constructing a minor 𝑀𝑀44 for matrix 𝐴𝐴(𝐺𝐺1): 
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Therefore, the new graph 𝐺𝐺1′ = 𝐺𝐺1\{𝑣𝑣4} will have the adjacency matrix 

corresponding to it 

𝐴𝐴(𝐺𝐺1′) =

⎝
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⎞

 

The algorithm for deleting rows and columns from a matrix has already been 

computerized. In this case, the software implementation will involve performing two 

shifts: for rows and columns. For a graph without isolated vertices, it is advisable to 

perform this operation using the adjacency matrix. 

In the adjacency matrix, the sign of an isolated vertex is the presence of a zero 

row and column of the same name. In the incidence matrix, the sign of an isolated 

vertex is the presence of a zero row. Therefore, if the vertex to be deleting from the 

graph is isolated, then in this unique case it is more convenient to perform this operation 

using the incidence matrix. When a zero row is deleting from the incidence matrix, no 

connection between other vertices (objects or nodes) is broken. Therefore, there is no 

need to track the appearance of columns that, after deleting this row, will contain only 

one unit, which is not permissible for the incidence matrix [3]. Using the incidence 

matrix when deleting an isolated vertex halves the program implementation (there is 

no need to delete a column at the same time, and there will also be only one shift). 

The operation of deleting one edge involves the disappearance of a single edge 

(connection or relation) from the graph while preserving all vertices (objects or nodes) 

and the remaining connections between objects [4]. Thus, only those elements in the 

adjacency matrix that correspond to the edges that are being deleting are changed. The 

remaining elements of the adjacency matrix retain their values. The order of the matrix 

also remains the same, because no vertex disappears from the graph as a result of 

deleting an edge. When a directed edge is deleting, only one element of the adjacency 

matrix is reducing. When an undirected edge is deleting, a pair of symmetric elements 

of the adjacency matrix undergo the same changes. 

Let it be necessary to delete a certain number of 𝑙𝑙𝑖𝑖𝑖𝑖−  edges between vertices 𝑣𝑣𝑖𝑖 and 
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𝑣𝑣𝑖𝑖. Therefore, to perform this operation, it is necessary to perform the arithmetic 

subtraction of the matrix 𝐴𝐴𝑒𝑒− from the adjacency matrix of the initial graph. In the 

subtractor matrix 𝐴𝐴𝑒𝑒−, the elements corresponding to the edges being deleted will be 

equal to 𝑙𝑙𝑖𝑖𝑖𝑖− . The remaining elements of this matrix will be zero. 

Consider, for example, the graph 𝐺𝐺2, 

 

Figure 2 – Directed graph 𝑮𝑮𝟐𝟐 
Author's development 

 

to which the adjacency matrix corresponds (in tabular or in the usual matrix form) 

 
 

In this matrix there is a pair of symmetric elements 𝑎𝑎15=𝑎𝑎51=1. These elements 

correspond to a pair of oppositely directed edges, which can be replaced by a single 

undirected edge. Suppose that this undirected edge needs to be deleted from this graph. 

Suppose that in addition, one of the strictly parallel directed edges from vertex 𝑣𝑣4 to 

vertex 𝑣𝑣2 needs to be deleted from this graph. This means that in the matrix 𝐴𝐴𝑒𝑒− only 

the elements 𝑙𝑙42− =1 and 𝑙𝑙15=𝑙𝑙51=1 will be non-zero. Therefore, to calculate the 

adjacency matrix of the graph 
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(𝐺𝐺2)′ = (𝐺𝐺2)\{𝑒𝑒(𝑣𝑣4,𝑣𝑣2)}\{𝑒𝑒(𝑣𝑣1,𝑣𝑣5)} = 

= (𝐺𝐺2)\{𝑒𝑒(𝑣𝑣4,𝑣𝑣2)}\{𝑒𝑒(𝑣𝑣1,𝑣𝑣5)}{𝑒𝑒(𝑣𝑣5,𝑣𝑣1)} 

(the notation 𝑒𝑒 means that this edge is directed) can be obtained by performing the 

following arithmetic subtraction: 

𝐴𝐴(𝐺𝐺2)− 𝐴𝐴𝑒𝑒− =

⎝
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= 𝐴𝐴((𝐺𝐺2)′). 

 

The software implementation of this operation is much simpler than its algebraic 

justification. To perform it, it is enough to reduce the corresponding elements of the 

adjacency matrix of the initial graph by the values 𝑙𝑙𝑖𝑖𝑖𝑖− . 

The operation of inserting an edge is the inverse of the operation of deleting an 

edge. When inserting an directed edge, one element of the adjacency matrix is expected 

to increase. When inserting an undirected edge, a pair of symmetric elements of the 

adjacency matrix undergo the same changes. Let's say that between vertices 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖 

it is necessary to add a certain number of 𝑙𝑙𝑖𝑖𝑖𝑖+  edges. In the software implementation, the 

corresponding elements of the adjacency matrix of the initial graph are increased by 

the specified value. The algebraic implementation of this operation involves the 

arithmetic sum of two matrices. One of the terms is the adjacency matrix of the initial 

graph. In the second term 𝐴𝐴𝑒𝑒+, the elements corresponding to the new edges are equal 

to 𝑙𝑙𝑖𝑖𝑖𝑖+ . The remaining elements of the second term are zero. 
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Suppose, for example, that it is necessary to introduce into the graph 𝐺𝐺1 two 

strictly parallel directed edges from the vertex 𝑣𝑣2 to the vertex 𝑣𝑣4 and one undirected 

edge between the vertices 𝑣𝑣3 and 𝑣𝑣7. This means that in this case 𝑙𝑙24+ =2 and 𝑙𝑙37+ =𝑙𝑙73+ =1. 

Then the adjacency matrix of the graph 

𝐺𝐺1′′ = 𝐺𝐺1 + 2 ∙ {𝑒𝑒(𝑣𝑣2,𝑣𝑣4)} + {𝑒𝑒(𝑣𝑣3,𝑣𝑣7)} 

can be obtained by performing the following arithmetic sum: 

𝐴𝐴(𝐺𝐺1) + 𝐴𝐴𝑒𝑒+ =
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= 𝐴𝐴(𝐺𝐺1′′). 

Conclusions. 

Some operations are more convenient to perform with adjacency matrices, and 

some with incidence matrices. However, the most common algorithms are still based 

on processing adjacency matrices. The same algorithms differ depending on whether 

directed or free graphs are involved in the operations considered. Depending on the 

types of graphs, there are also restrictions on the representation of meaningful 

information by matrices of these graphs. But in practical applications, these limitations 

are usually insignificant. Therefore, for each considered unary operation on graphs and 

each type of graph, it is possible to propose a series of some arithmetic operations that 

allow obtaining the matrix of a new graph or a clear, easily programmable algorithm 

for transforming the matrices of the initial graphs. None of the considered unary 

operations on graphs is impossible in matrix implementation, and the proposed 

algorithms can significantly simplify computer processing of graphs. 
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Анотація. Сьогодення ставить перед наукою все більшу кількість задач, пов’язаних із 

комп’ютеризацією. Саме потреби комп’ютерної обробки інформації потребують 
дослідження можливостей матричного подання графів і, як наслідок, матричного подання 
усіх можливих перетворень графів. Матрична реалізація операцій над графами має свої 
особливості в залежності від виду кожного конкретного графу. Через це, вочевидь, процедура 
їх виконання не є універсальною. Матриці суміжності та інцидентності повністю 
характеризують граф. Тому для матричного виконання розглянутих основних унарних 
операцій над графами треба залучати апарат звичайних арифметичних матричних операцій, 
описаних в лінійній алгебрі. 

Ключові слова: орієнтований та неорієнтований граф, матриця суміжності, операції 
над графами, арифметичні операції над матрицями. 
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