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Abstract. Today, science is faced with an increasing number of problems related to
computerization. It is the needs of computer information processing that require the study of the
possibilities of matrix representation of graphs and, as a result, matrix representation of all possible
transformations of graphs. The matrix implementation of operations on graphs has its own
characteristics depending on the type of each specific graph. Because of this, obviously, the
procedure for their implementation is not universal. A graph can be fully characterized by the
adjacency matrix. Therefore, for the matrix implementation of the considered basic unary operations
on graphs, it is necessary to use the apparatus of ordinary arithmetic matrix operations described in
linear algebra.
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Introduction.

When studying a system of objects connected by some arbitrary types of
relationships, both directed and undirected graphs can be used. Each such system is an
ordered collection of elements with which certain changes can occur. Each such
specific system can be represented graphically as a graph or in digital format as an
adjacency matrix or incidence matrix of such a graph. n any case, changes in the
elements of the system are reflected by unary operations on the vertices or edges of the
corresponding graph. The graphical implementation of such operations has already
been well studied and described [1]. But computer processing of information involves
its digital representation in matrix form. Algebraic matrix apparatus is also widely
represented in mathematical research [2]. This article aims to establish a
correspondence between known operations on ordinary matrices and unary operations
on elements of an arbitrary graph. In this way, a transition from a graphical to a digital
method of not only representing, but also processing various information can be made.

Main text.

Let’s consider an directed graph G; (Fig. 1).
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Figure 1 — Directed graph G,

Author's development

The adjacency matrix corresponding to this graph will be as follows (in tabular or

in the usual matrix form):

Final

V| Va2 | V3| Vy| Vs | Vg | Uy 1110100
B 000000 O

:U3 11111 0001110
AG)=| St T AGH=|0 1 00 0 1 0
i 0000011

o 00000 0 1

o 00000 0 1

Deleting a vertex from a graph entails deleting all edges incident to it, which

results in deleting all connections of this object or node to other objects or nodes. This
means that when deleting a vertex v; from the adjacency matrix, the i-th row and i-th
column must be deleted. In this regard, the algorithm for performing the operation of
deleting a vertex v; from a graph in a matrix representation is similar to the algorithm
for constructing a minor M;; for the adjacency matrix of this graph. For example,
suppose that we want to delete vertex v, from graph G;. This is equivalent to

constructing a minor M,, for matrix A(G,):

==, OoO O O
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Therefore, the new graph G; = G,\{v,} will have the adjacency matrix

corresponding to it

111100
/000000\
~ looo0o 11 of
AGD=19 0 0 0 1 1
0000 0 1
00000 1

The algorithm for deleting rows and columns from a matrix has already been
computerized. In this case, the software implementation will involve performing two
shifts: for rows and columns. For a graph without isolated vertices, it is advisable to
perform this operation using the adjacency matrix.

In the adjacency matrix, the sign of an isolated vertex is the presence of a zero
row and column of the same name. In the incidence matrix, the sign of an isolated
vertex is the presence of a zero row. Therefore, if the vertex to be deleting from the
graph is isolated, then in this unique case it is more convenient to perform this operation
using the incidence matrix. When a zero row is deleting from the incidence matrix, no
connection between other vertices (objects or nodes) is broken. Therefore, there is no
need to track the appearance of columns that, after deleting this row, will contain only
one unit, which is not permissible for the incidence matrix [3]. Using the incidence
matrix when deleting an isolated vertex halves the program implementation (there is

no need to delete a column at the same time, and there will also be only one shift).

The operation of deleting one edge involves the disappearance of a single edge
(connection or relation) from the graph while preserving all vertices (objects or nodes)
and the remaining connections between objects [4]. Thus, only those elements in the
adjacency matrix that correspond to the edges that are being deleting are changed. The
remaining elements of the adjacency matrix retain their values. The order of the matrix
also remains the same, because no vertex disappears from the graph as a result of
deleting an edge. When a directed edge is deleting, only one element of the adjacency
matrix is reducing. When an undirected edge is deleting, a pair of symmetric elements
of the adjacency matrix undergo the same changes.

Let it be necessary to delete a certain number of [;; edges between vertices v; and
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vj. Therefore, to perform this operation, it is necessary to perform the arithmetic

subtraction of the matrix A, from the adjacency matrix of the initial graph. In the
subtractor matrix A,, the elements corresponding to the edges being deleted will be

equal to [;;. The remaining elements of this matrix will be zero.

Consider, for example, the graph G,

Figure 2 — Directed graph G,

Author's development

to which the adjacency matrix corresponds (in tabular or in the usual matrix form)

Final

vy | Vo| V3| Va| Vs | V6 | V7 1 1.0 01 00
:1 111 . 1 0 O 1 0 0 0 O
_ vz T O 0 001 1 o0
A(Gy)= | S AGy)=[0 2 0 0 0 0 0
= | Vs 1 0 0 0 0O 0 O

Slv |1
vs 3 . 0O 0 01 0 1 1
v 1 0 00 01 01

In this matrix there is a pair of symmetric elements a,s=as;=1. These elements
correspond to a pair of oppositely directed edges, which can be replaced by a single
undirected edge. Suppose that this undirected edge needs to be deleted from this graph.
Suppose that in addition, one of the strictly parallel directed edges from vertex v, to
vertex v, needs to be deleted from this graph. This means that in the matrix A, only
the elements [;,=1 and l;5=l5;=1 will be non-zero. Therefore, to calculate the

adjacency matrix of the graph
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(G2)' = (G)I\{€(va, v2)\{e(vy, v5)} =
= (G)\{€(V4, v2)N\{E(v1, v5)}{E(Vs, 1)}

(the notation € means that this edge is directed) can be obtained by performing the

following arithmetic subtraction:

1 1.0 0 1 0 O 0 00 O 1 0 0
/0010000\/0000000\
|0000110||0000000|
AG))—A; =0 2 0 0 00 Of—f{0 1 0 0 0 0 0=
100 0 0 0 0 10 000 00
00010 11 00 0O0O0TO0O
000O0T1O0 1 00 0O0O0TO 0O
1100 0 0 0
/0010000\
0000 110
=10 1 0 0 0 0 0[|=AG)).
k0000011)
00010 11
000O0T1O0 1

The software implementation of this operation is much simpler than its algebraic
justification. To perform it, it is enough to reduce the corresponding elements of the

adjacency matrix of the initial graph by the values [;;.

The operation of inserting an edge is the inverse of the operation of deleting an

edge. When inserting an directed edge, one element of the adjacency matrix is expected
to increase. When inserting an undirected edge, a pair of symmetric elements of the
adjacency matrix undergo the same changes. Let's say that between vertices v; and v;
it is necessary to add a certain number of [} ; edges. In the software implementation, the
corresponding elements of the adjacency matrix of the initial graph are increased by
the specified value. The algebraic implementation of this operation involves the
arithmetic sum of two matrices. One of the terms is the adjacency matrix of the initial
graph. In the second term A}, the elements corresponding to the new edges are equal

to l:; The remaining elements of the second term are zero.
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Suppose, for example, that it is necessary to introduce into the graph G; two
strictly parallel directed edges from the vertex v, to the vertex v, and one undirected
edge between the vertices v5 and v,. This means that in this case [3,=2 and [3,=17;=1.

Then the adjacency matrix of the graph
Gi' =Gy +2-{€(wp, vs)} + {e(vs, v7)}

can be obtained by performing the following arithmetic sum:

1110100 000 0O OO0 O
/0000000\‘/0002000\‘
0001110 000O0UO0TO 0 1
AG)+A:=lo 1 0 0 0 1 0|l+|0 0 0 o000 0=
000O0TUO0T1 1 000 0O0O0 O
000O0UO0TO 0 1 000 0O0O0 O
000O0UO0TO 01 0010000
1110100
/0002000\
0001111
=lo 1 0 0 0 1 0l|=4w@).
00 0O0UO0T1 1
00 0O0UO0TO0 1
0010001

Conclusions.

Some operations are more convenient to perform with adjacency matrices, and
some with incidence matrices. However, the most common algorithms are still based
on processing adjacency matrices. The same algorithms differ depending on whether
directed or free graphs are involved in the operations considered. Depending on the
types of graphs, there are also restrictions on the representation of meaningful
information by matrices of these graphs. But in practical applications, these limitations
are usually insignificant. Therefore, for each considered unary operation on graphs and
each type of graph, it is possible to propose a series of some arithmetic operations that
allow obtaining the matrix of a new graph or a clear, easily programmable algorithm
for transforming the matrices of the initial graphs. None of the considered unary
operations on graphs is impossible in matrix implementation, and the proposed

algorithms can significantly simplify computer processing of graphs.
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Anomauia. Cooco0enns cmagums neped HAyKow 6ce OLIbULy KiIbKicmb 3a0a4, n08 a3aHux i3
xkomn tomepuzayicio. Came nompebu Komn'tomepHoi 00pobKku iHpopmayii nompedyiomo
00CTIOIHCEHHS MONCIUBOCMEN MAMPUUHO20 NOOAHHS 2papis i, AK HACAIO0K, MAMPUUHO2O0 NOOAHHS.
VCIX MOJCIUBUX nepemseopeHb 2paghie. Mampuuna peanizayis onepayiti Hao epagamu mae c80i
0COOIUBOCTI 8 3ANEHCHOCTI 810 8UAY KOHCHO2O KOHKpemHo20 epagy. Uepes ye, 6ouesuon, npoyedypa
ix euxomamHs He € YHigepcanvHow. Mampuyi cymisicHocmi ma HYUOEHMHOCMI NOBHICIO
xapaxkmepusyroms cpag. Tomy Ons MampuuHo20 GUKOHAHHA PO3TAHYMUX OCHOBHUX VHAPHUX
onepayiti Hao epagamu mpeba 3aryuamu anapam 36UYAUHUX APUDMEMUUHUX MAMPUYHUX Onepayil,
ONUCAHUX 8 TIHIUHIU aneeopi.

Knrowuosi cnoea: opicnmosanuii ma HeopieHmo8aruil epagh, mampuysi CyMidcHocmi, onepayii
Hao epaghamu, apugmemuuni onepayii HA0 MAMPUYIMU.
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