
SWorldJournal Issue 30 / Part 4

 ISSN 2663-5712 www.sworldjournal.com 74

https://www.sworldjournal.com/index.php/swj/article/view/swj30-04-075
DOI: 10.30888/2663-5712.2025-30-04-075

INTEGRATION OF LARGE LANGUAGE MODELS (LLM) INTO THE

GAME CONTENT CREATION PROCESS
Yuliia Yermolaieva

ORCID: https://orcid.org/0009-0004-3523-1930
Game Development, Environment 3D Artist, Peloton Interactive HQ

441 Ninth Avenue, 6th Floor New York, NY 10001

Abstract. The article explores the role of large language models in video game development.
The main objective is to analyze their applications and assess future development prospects. The
study employs general scientific methods of cognition, including critical analysis of academic
literature, examination of expert materials, grouping, sorting, systematization, and synthesis. The
research findings highlight the key advantages of using large language models, such as significantly
accelerating development and enabling automated generation of descriptions for various elements,
from game environments to characters, objects, and behavioral scenarios. Language models are also
widely used for dialogue generation, which is one of their most common applications, as well as for
scenario modeling and adapting character behavior to the game context. The main drawbacks of
these models include hallucination phenomena, which remain an unresolved issue. This necessitates
clearer instructions from developers to reduce errors and improve task accuracy. Optimizing
approaches to working with language models will allow for more effective fine-tuning based on
specific requests, ultimately enhancing their quality and efficiency. In order to improve work with
large conditional environments, game developers need to learn how to break down tasks into smaller
components, provide more detailed instructions, and clearly understand the structure of queries and
operations. These should be specialists in game environment development who use language models
to accelerate their work rather than replace it. As of today, language models in automated mode are
still unable to create fully effective game environments. The practical significance of the study lies
in the potential to reduce game content creation costs through the use of large language models. This
not only optimizes developers’ work but also directly benefits end users by lowering the cost of
gaming products.

Keywords: large language models, content generation, video games, development automation,
data validation.

Introduction

The emergence of language models has significantly transformed approaches to

software development, scripting, and process modeling. Surveys of entrepreneurs

indicate that most have already integrated large language model technologies into their

production processes. These models are most commonly used for research and

development purposes.

The origins of such models stem from fundamental research in artificial

intelligence and machine learning. However, they are now actively employed for

process automation, data analysis, and the generation of original texts. At this point, it

is clear that large language models can handle complex tasks that previously required

substantial labor resources.

SWorldJournal Issue 30 / Part 4

 ISSN 2663-5712 www.sworldjournal.com 75

The gaming industry also actively utilizes large language models at various stages

of game development. Industry reports highlight that implementing artificial

intelligence, particularly language models, can reduce labor costs by 40%, as the

software development cycle is significantly shortened. This, in turn, lowers the overall

cost of game production.

Modern games go beyond simple coding and graphics. They incorporate intricate

storylines, dialogues, interactive elements, and require a deep understanding of context

and programming languages. As they continue to evolve, large language models enable

the creation of more realistic and immersive game worlds, significantly enhancing

product quality and increasing the profitability of game developers.

An analysis of expert literature suggests that the potential for using language

models to generate game content is promising and virtually limitless. These models are

already accelerating game development, and in the near future, they will enable the

creation of virtual environments that dynamically adapt based on user behavior.

Literature Review

The topic of integrating large language models is only beginning to gain

popularity, which is why there are still relatively few scientific studies dedicated to this

area. However, a considerable amount of specialized literature can be found online,

including developer blogs and reviews of various software tools that help automate

different aspects of game content development. The study by N. Alshahwan et al. at

Meta [1] focuses on ensuring stability in game content development. Additionally,

research by R. Gallotta, A. Liapis, and G. Yannakakis [2], as well as M. F. Maleki and

R. Zhao [5], was used in the current study, as they explore general methodologies for

creating AI-driven game environments.

A more general overview of how LLMs work, their capabilities, and their

limitations in the context of video games is systematically discussed in reports by Just

AI [3]. Furthermore, the potential applications of language models are analyzed in

studies by P. Lanzi and D. Loiacono [4]. The collective findings of these studies

confirm the transformative potential of integrating LLMs into modern game design and

development. The application of LLMs in game code testing is examined in the work

SWorldJournal Issue 30 / Part 4

 ISSN 2663-5712 www.sworldjournal.com 76

of C. Păduraru, A. Staicu, and A. Ștefănescu [7], who propose methods for automated

unit testing in game development. T. Reichert, M. Miftari, C. Herling, and N. Marsden

[8] analyze the impact of LLMs on serious game development. A previous analytical

review of the role of LLMs in game development was conducted by P. Sweetser [9].

Purpose of the article The objective of this article is to highlight the key

directions for utilizing large language models in game development.

Research results

A language model is a program designed for natural language processing (NLP).

It predicts the likelihood of word placement in a sentence or phrase and generates

responses based on this, simulating meaningful speech.

The technology began to develop actively in 2017. The new Transformer

architecture, developed by Google, became the foundation for future Large Language

Models and fundamentally changed previous principles of machine language

processing. With this technology, input data could be processed in parallel rather than

sequentially, significantly increasing the speed of both model operation and training

[8].

Large Language Models are characterized by their vast number of parameters,

measured in billions. The number of parameters determines the neural network’s ability

to process data with maximum accuracy and speed—where speed is just as important

as the reliability and coherence of the generated information. These programs operate

based on machine learning algorithms, allowing them to process massive volumes of

text data within seconds. Deep learning enables the system to understand the

complexities of human language, even when queries contain technical terms,

colloquialisms, or errors.

Today, there are many language models, categorized as either static or neural.

Static models rely on traditional statistical methods and probability theory to determine

the next words in a sequence.

Neural language models are considered more advanced, surpassing static models

in efficiency by utilizing multiple types of neural networks to generate natural

language. The most well-known among them include:

SWorldJournal Issue 30 / Part 4

 ISSN 2663-5712 www.sworldjournal.com 77

• GPT-4 by OpenAI. The latest version of the popular neural network,

distinguished by enhanced “human-like” responses, reliability, and creativity. Its key

innovation over the previous version is multimodality – GPT-4 can process queries not

only in text format but also in audio and video.

• LaMDA by Google. A conversational neural model designed for user

interaction and communication.

• BERT by Google. Primarily used for search queries, language translation, and

question-answering tasks.

• BLOOM by BigScience. The largest multilingual neural network, trained on

176 billion parameters. It can generate text in 46 languages and 13 programming

languages [3].

Table 1 systematizes the key capabilities of large language models in game

development.

Table 1 – C apabilities of lar ge language models (L L M) for game development

LLM Capabilities Description
Content generation Large language models can create textual and visual content, which is

useful for developing scripts, dialogues, character descriptions, and
world-building in games.

Code generation LLM can act as "junior programmers," assisting in code review or
independently writing code snippets that can be used for game

mechanics development.
Answering queries and

questions
Leveraging knowledge accumulated during training, LLM can

quickly and accurately respond to player inquiries, providing real-
time support or functioning as part of in-game NPCs.

Dialogue management
for chatbots and NPCs

LLM can be used to control dialogues in chatbots or NPCs, ensuring
realistic interactions with players through text or voice.

Information retrieval Integrating LLM into in-game search systems can enhance the speed
and efficiency of finding necessary information, such as solving

quests or gathering resources.
Summarization LLM can quickly generate summaries of texts or instructions, which

can be used for creating hints or reference materials for players.
Machine translation The ability to translate text between languages can be utilized for

game localization, making the content accessible to a wider audience.
Code testing LLM can check code and identify overlooked errors, reducing

debugging time and improving development efficiency.
Sentiment analysis LLM can analyze emotions in text, providing deeper insights into

player reactions to game content or adapting NPC behavior based on
player emotions.

Note: Systematized by the author based on [1, 3].

SWorldJournal Issue 30 / Part 4

 ISSN 2663-5712 www.sworldjournal.com 78

Large language models are primarily used in game development to generate

character movements by applying simple instructions and methods, such as Low-Rank

Adaptation. These techniques enable the creation of realistic animations, significantly

reducing the workload for animators. As a result, character movements can be

generated in real time, maintaining a natural appearance without requiring specialized

graphic skills. Additionally, language models are utilized for animating non-playable

characters. For example, they can simulate emotional states, modify the environment,

or adjust the properties of certain objects. If a character experiences fatigue, the model

can automatically alter their walking style, make their facial expression appear more

exhausted, slightly slouch their posture, and slow their steps. The same applies to

objects that change their properties under external influences [9].

Adapting character movements to the surrounding environment is particularly

crucial in combat games, as language models can generate unique animations based on

the selected weapon or fighting style. For instance, if a character wields a heavy

weapon, their movements become slower, but their attacks gain more impact.

Similarly, complex maneuvers such as jumps and dodges are modeled by considering

environmental factors. High jumps and falls require different dynamics, necessitating

distinct design approaches. Moreover, artificial intelligence enhances gameplay

personalization by adapting characters to a player's style. If a player prefers an

aggressive approach, the model can adjust movements, combat stances, and even the

character’s appearance to match this playstyle [5].

Overall, the use of language models contributes to the naturalization of character

behavior and appearance, ensuring their alignment with gameplay, settings, and

environmental conditions.

Key aspects of adapting language models for character movement generation in

video games should be examined. First, it is essential to focus on the accuracy of

instruction design. Instructions consist of short tasks or task templates interpreted by

artificial intelligence for execution. The more precisely these instructions are

formulated, the higher the likelihood that the developer, organizer, or game designer

will achieve the desired result.

SWorldJournal Issue 30 / Part 4

 ISSN 2663-5712 www.sworldjournal.com 79

Another important aspect is defining control conditions, particularly the initial

and final positions of a character. Language models generate movement sequences in

a specialized code format compatible with the game's programming language. This

code facilitates the animation of characters, game worlds, objects, and other elements

within the gaming environment.

An instruction consists of two key parts:

• Task description – specifying what needs to be done (e.g., creating a sword

attack movement or running downhill).

• Control conditions – defining starting pose, keyframes, movement speed, etc.

• Example instruction: [Jump movement] [Starting pose: bent legs, arms raised]

[Final pose: fully extended body in mid-air]. The LLM response would be encoded

character movements that can be transformed into animation.

• Model training. LLM utilizes prior knowledge of human movements to

generate realistic animations. If the model lacks prior training, it undergoes additional

learning on a large dataset of human motion recordings. The LoRA method enables

rapid training with minimal parameter modifications.

• Improving movement quality. When control conditions are provided,

movements become more precise and realistic. Research indicates that motion

generation with additional control parameters (e.g., text + pose) yields better results

than using text descriptions alone.

• Unified training approach. Training the model on multiple movement types

enhances its ability to interpret various scenarios and accurately reproduce new

movement combinations. For example, if the model is trained on both walking and

running, it can smoothly transition between these states when needed [10].

Despite the key advantages of using language models, it is important to highlight

the main drawbacks and challenges faced by every designer and programmer who

incorporates them into game development.

One of the challenges in using large language models is the phenomenon known

as "hallucinations," which frequently occur in text-based models such as OpenAI's

ChatGPT or Google's BART [4]. The core issue lies in the fact that generated code

SWorldJournal Issue 30 / Part 4

 ISSN 2663-5712 www.sworldjournal.com 80

often turns out to be fabricated, yet the model presents it as accurate and functional. In

game development, for instance, there are cases where generated content does not align

with the initial requests or simulates working processes, but upon publication and

testing, it becomes evident that the results are non-functional [6]. Even the most

advanced language models are capable of producing incorrect outputs, a fact

acknowledged by AI system developers themselves. These challenges become

particularly complex in fields requiring multi-step logical reasoning, as even a minor

logical error can render an entire request unfeasible. To reduce the occurrence of

hallucinations in language models, proper training of game environment developers is

essential [2].

Effectively addressing hallucinations requires precise instruction formulation.

Tasks should be concise and clearly defined. Large-scale tasks should be broken down

into smaller sub-tasks that artificial intelligence can process sequentially in a coherent

logical flow. For example, if a developer is tasked with creating a specific world, they

should start with minor details, such as describing the appearance of trees, buildings,

surface types, characters, weather conditions, or geographical features. By developing

individual elements and subsequently integrating them into a unified whole, it becomes

possible to achieve better coherence between components, thereby enhancing the

efficiency of machine code generation.

Detailed task formulation is crucial, as it enables artificial intelligence to respond

to a developer's requests with greater accuracy rather than generating its own versions

of environments, objects, or characters. Another key aspect is the continuous learning

process of the AI model. Through regular interaction, both the developer and the

generative model adapt to the typology, sequence, and specifics of assigned tasks. This

approach not only facilitates the training of the machine model but also helps

developers refine their ability to formulate precise instructions, ultimately leading to

significantly improved outcomes in the future [7].

It can be noted that the current practice of creating game content using large

language models demonstrates both positive and less successful results. Among the

less successful cases, there are instances where AI-generated characters, objects, or

SWorldJournal Issue 30 / Part 4

 ISSN 2663-5712 www.sworldjournal.com 81

environments fail to meet realistic expectations and significantly differ from those

created without artificial intelligence. This issue is particularly evident in AI-generated

character dialogues, which often lack realism, do not reflect contemporary speech

styles, fail to incorporate relevant slang, or are entirely inappropriate for the given

context.

More successful cases include game projects that undergo thorough verification

of game code and environments. In such projects, developers pay close attention to

every detail, ensuring that any unrealistic or incorrect outputs are promptly corrected

and refined. Based on this, it can be concluded that the future prospects of language

models are tied to their continuous improvement, particularly in reducing

hallucinations and achieving better alignment with developer requests. It is expected

that models will become more adept at understanding natural language without

requiring simplified task formulations or the avoidance of complex terminology.

Looking ahead, language models are likely to be adapted to the specific needs of

various industries. Specialized applications tailored for scriptwriting, dialogue

generation, or the creation of specific game interfaces are expected to become more

widespread. Since the initial setup of such applications will be conducted at a high

professional level, they will enable lower-skilled specialists to interact with them

effectively. This will accelerate game content development while reducing production

costs.

Conclusions

Based on the conducted research, it can be noted that large language models

already play a key role in video game development. They not only generate meaningful

and in-depth visual content but also enable real-time analysis, adjustment, and

verification, significantly simplifying the game creation process and making it more

efficient. As a result, player interaction with the game environment improves, as

characters become more adaptive to their surroundings.

The impact of language models on programming automation is substantial, as they

reduce the overall workload on developers and enhance productivity. However, despite

their great potential, language models still face unresolved issues, such as

SWorldJournal Issue 30 / Part 4

 ISSN 2663-5712 www.sworldjournal.com 82

hallucinations and information distortions, leading to the generation of inaccurate

content. To address this problem, developers need to learn how to formulate clear tasks,

providing detailed requirements for game code creation.

References

1. Alshahwan, N., et al. (2024). Automated unit test improvement using large

language models at Meta. 32nd ACM Symposium on the Foundations of Software

Engineering (FSE 24). DOI: https://doi.org/10.48550/arXiv.2402.09171.

2. Gallotta, R., Liapis, A., & Yannakakis, G. (2024). Consistent game content

creation via function calling for large language models. 2024 IEEE Conference on

Games (CoG), Milan, Italy, 1-4. DOI:

https://doi.org/10.1109/CoG60054.2024.10645599.

3. Just AI. (2023). Large language models: What they are and how they work.

URL: https://just-ai.com/blog/bolshie-yazykovye-modeli-chto-eto-takoe-i-kak-oni-

rabotayut.

4. Lanzi, P. L., & Loiacono, D. (2023). ChatGPT and other large language

models as evolutionary engines for online interactive collaborative game design.

Proceedings of the Genetic and Evolutionary Computation Conference, 2023. DOI:

https://doi.org/10.1145/3583131.3590351.

5. Maleki, M. F., & Zhao, R. (2024). Procedural content generation in games: A

survey with insights on emerging LLM integration. Proceedings of the AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment, 2024. DOI:

https://doi.org/10.1609/aiide.v20i1.31877.

6. OpenAI. (2024). ChatGPT: Large Language Model. Accessed: 2024-07-03.

7. Păduraru, C., Staicu, A., & Ștefănescu, A. (2024). LLM-based methods for

the creation of unit tests in game development. Procedia Computer Science, 246, 2459-

2468. DOI: https://doi.org/10.1016/j.procs.2024.09.473.

8. Reichert, T., Miftari, M., Herling, C., & Marsden, N. (2024). Empowering

female founders with AI and play: Integration of a large language model into a serious

game with player-generated content. International Conference on Human-Computer

SWorldJournal Issue 30 / Part 4

 ISSN 2663-5712 www.sworldjournal.com 83

Interaction, 2024. DOI: https://doi.org/10.1007/978-3-031-60695-3_5.

9. Sweetser, P. (2024). Large language models and video games: A preliminary

scoping review. Proceedings of the 6th ACM Conference on AI in Games. DOI:

https://doi.org/10.1145/3640794.3665582.

10. Zhang, Y., Huang, D., Liu, B., Tang, S., Lu, Y., Chen, L., Bai, L., Chu, Q.,

Yu, N., & Ouyang, W. (2023). MotionGPT: Finetuned LLMs are general-purpose

motion generators. Computer Vision and Pattern Recognition. DOI:

https://doi.org/10.48550/arXiv.2306.10900.

