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Abstract. Contemporary video surveillance infrastructure produces substantial data streams, 

posing challenges for efficient real-time processing. Current automated anomaly detection 
techniques frequently demand extensive computational resources and function as opaque "black box" 
systems, constraining their deployment in critical domains including public security and safety 
monitoring. This work introduces an integrated methodology tackling two fundamental limitations: 
ineffective handling of superfluous visual data and lack of algorithmic transparency in artificial 
intelligence systems. The proposed framework merges an advanced informative frame selection 
technique with interpretable detection model processing. The initial phase employs a hybrid 
optimization approach integrating InceptionV3 convolutional neural networks with genetic 
algorithms, achieving 70-85% data reduction while preserving 98% recall performance. The 
subsequent phase delivers not only anomaly classification but also produces comprehensible decision 
explanations via explainable AI (XAI) integration, specifically utilizing Grad-CAM and guided 
backpropagation techniques. Experimental evaluation on benchmark datasets confirms the 
superiority of the proposed method over contemporary solutions. Results demonstrate 3-5% 
enhancement in classification precision coupled with reduced computational requirements. 
Additionally, the system generates visual decision rationalizations through heatmap representations, 
thereby increasing operational trustworthiness. This integrated framework facilitates the deployment 
of effective real-time video analysis systems that provide comprehensive decision transparency and 
operational accountability. 

Keywords: artificial intelligence, video surveillance, information systems, genetic algorithm, 
modeling, computer vision, video surveillance data. 

 

Introduction. 

Modern video surveillance systems generate vast amounts of data, making manual 

analysis practically impossible. Automated detection of anomalous events, particularly 

acts of violence, using artificial intelligence methods faces two key challenges: the 



SWorldJournal                                                                                                                        Issue 33 / Part 1 

 ISSN 2663-5712                                                                                                                                                                                    www.sworldjournal.com 189 

inefficiency of processing irrelevant data and the "black box" nature of deep neural 

networks' decision-making, where human operators cannot understand the machine's 

logic. This undermines trust in the system and complicates its deployment in critical 

domains such as public security and facility protection. 

Analysis of recent studies on improving the efficiency of video surveillance 

systems shows significant progress in enhancing detection accuracy. However, key 

challenges in computational efficiency and result interpretability remain unresolved. A 

major step in addressing this problem has been made in the work of Salman, et al. [1]. 

Research in recent years can be broadly divided into three main categories. The 

first category comprises methods based on deep learning. Studies [2-4] demonstrate 

the high effectiveness of architectures based on 3D convolutions and transformers in 

anomaly detection tasks. However, these approaches require processing the complete 

video stream, leading to excessive computational costs. Models often operate as "black 

boxes," complicating their application in critical systems where decision-making 

transparency is essential. 

The second category involves approaches to key frame selection. Works [5-6] 

propose methods for processing and compressing video data, particularly based on 

motion analysis. Despite reducing data volume, these methods often miss important 

frames with sudden anomalies unrelated to motion. Other studies propose machine 

learning methods for frame selection, but they fail to consider feature optimization at 

the individual frame level, limiting their effectiveness. The third category addresses 

the processing of massive data streams, real-time operation, and compliance with 

decision transparency requirements. This issue is examined in works [6-7]. However, 

these solutions often overlook optimization at the individual node level, leading to 

inefficient resource utilization. 

The aim is to develop a comprehensive approach for automated anomaly detection 

in video recordings by combining an efficient key frame selection method with an 

interpretable deep learning model (XAI-Inv3), aimed at overcoming the limitations of 

modern video analytics systems regarding computational inefficiency and insufficient 

decision-making transparency. 
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Research Objectives: 

1. To conduct a review of contemporary approaches to video anomaly detection, 

identifying their shortcomings, particularly the high computational costs 

associated with processing redundant data. 

2. To define and implement a fitness function that ensures a balance between 

classification accuracy and the number of selected features. 

3. To propose a frame comparison mechanism based on calculating the Euclidean 

distance between optimized feature vectors and adaptive threshold 

determination for identifying key frames. 

Research Results. 

To overcome these limitations, a methodology is proposed that utilizes an 

intelligent filter to select only the most important frames containing potential 

anomalies from the video stream, along with tools for analyzing the selected frames 

for both event classification and providing human-understandable explanations of the 

decisions made. This approach significantly reduces computational load and enhances 

the transparency of the system's operation. 

This methodology combines the power of the InceptionV3 convolutional neural 

network for extracting high-level features from each frame and a genetic algorithm for 

optimizing the selection of the most relevant features. The genetic algorithm iteratively 

evolves the set of features, maximizing accuracy while minimizing their quantity. The 

final stage involves calculating the Euclidean distance between consecutive frames 

based on the selected features and selecting those frames whose distance exceeds a 

dynamic threshold, indicating a significant change in the scene. 

The system model is built on the InceptionV3 architecture, but its key aspect is 

modification for interpretability (eXplainable AI, XAI). It integrates gradient-based 

methods such as Grad-CAM (Gradient-weighted Class Activation Mapping) and 

guided backpropagation. These methods allow for the visualization, in the form of 

"heat maps," of the image regions that most influenced the model's prediction (e.g., a 

fist, a weapon, chaotic motion), providing the operator with a visual and 

understandable explanation of why an event was classified as anomalous. 
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In this methodology, the genetic algorithm begins by creating an initial 

population. Each individual in this population, called a "chromosome," is a binary 

vector. The length of the vector corresponds to the total number of features extracted 

from the frame by the InceptionV3 convolutional neural network. Each bit in the 

chromosome (gene) indicates the inclusion (1) or exclusion (0) of a specific feature 

from subsequent analysis. Thus, the chromosome represents a compactly encoded 

subset of candidate features. 

Each chromosome is evaluated using a fitness function. This function is the most 

critical component as it guides the direction of evolution. It not only maximizes 

classification accuracy but also incorporates a penalty coefficient (λ) for an excessively 

large number of selected features. Mathematically, this is expressed as:  

𝐹𝐹 (𝑐𝑐) = 𝐴𝐴 (𝑐𝑐) − λ ∗ 𝐷𝐷 (𝑐𝑐) 

where, 

𝐴𝐴 (𝑐𝑐) is the classification accuracy demonstrated by the model (e.g., XAI-Inv3) 

when using not the full set of features but only the subset encoded in the chromosome 

as input. It measures how well the model can detect anomalies using only those features 

for which the value in chromosome 𝑐𝑐 is set to 1. 

𝐷𝐷 (𝑐𝑐) is the total number of features selected (activated) in chromosome 𝑐𝑐. This 

is the count of ones (1) in the binary vector of the chromosome. For example, if a 

chromosome has the form [1, 0, 0, 1, 1, 0], then 𝐷𝐷 (𝑐𝑐) = 3. 

This ensures a search for a compromise between high accuracy and efficiency. 

Based on the obtained fitness scores, selection occurs: chromosomes with a higher 

value have a greater probability of being chosen for "reproduction" using a "roulette 

wheel" or tournament selection mechanism. 

The selected "parent" chromosomes undergo genetic operators. The crossover 

operator exchanges parts between two chromosomes, creating new "offspring" with a 

combination of parental features. The mutation operator randomly changes individual 

bits in the chromosomes (with a low probability), introducing new genetic information 

into the population and preventing stagnation in local optima. This cycle (evaluation, 

selection, crossover, mutation) repeats for a specified number of generations until a 
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suboptimal set of features is found that maximizes the value of the fitness function. 

After the genetic algorithm has determined the optimal subset of features for each 

frame, the next step is to quantitatively measure the similarity between consecutive 

frames. For this purpose, the Euclidean distance is used. Let two vectors of optimized 

features, determined by the genetic algorithm for frames 𝑖𝑖 and 𝑗𝑗, be denoted as: 

𝐹𝐹𝑖𝑖 = �𝑓𝑓𝑖𝑖
(1), 𝑓𝑓𝑖𝑖

(2), 𝑓𝑓𝑖𝑖
(𝑑𝑑)� ,𝐹𝐹𝑗𝑗 = �𝑓𝑓𝑗𝑗

(1),𝑓𝑓𝑗𝑗
(2),𝑓𝑓𝑗𝑗

(𝑑𝑑)�, 

 

where,  𝑑𝑑 — the number of features selected in the chromosome. 

The Euclidean distance 𝐷𝐷𝑖𝑖𝑖𝑖  between these vectors is calculated by the formula: 

𝐷𝐷𝑖𝑖𝑖𝑖 = ��(𝑓𝑓𝑖𝑖
(𝑘𝑘)−𝑓𝑓𝑗𝑗

(𝑘𝑘))2.
𝑑𝑑

𝑘𝑘=1

 

where,,  𝑓𝑓𝑖𝑖
(𝑘𝑘) and   𝑓𝑓𝑗𝑗

(𝑘𝑘)— are the values of the  𝑘𝑘  th feature for frames  𝑖𝑖 and 𝑗𝑗 

respectively. 

For each feature 𝑘𝑘 the difference (𝑓𝑓𝑖𝑖
(𝑘𝑘)−𝑓𝑓𝑗𝑗

(𝑘𝑘)), is calculated and then squared to 

eliminate negative values and amplify large discrepancies. 

A critical aspect is determining the threshold value that separates key frames from 

redundant ones. A fixed threshold is ineffective due to the variability in recording 

conditions. An adaptive approach can be employed: the threshold is calculated 

dynamically based on the statistics of the first 𝑁𝑁 frames of the video (e.g., 1000). The 

average Euclidean distance for this sample is computed, and then the threshold value 

is set as a multiple of this average. This allows the system to automatically adapt to the 

specific video.  

The final classification process is relatively simple yet effective. For each pair of 

consecutive frames, the Euclidean distance between their optimized feature vectors is 

calculated. If this distance exceeds the computed dynamic threshold, the second frame 

in the pair is marked as a key frame. All frames with distances below the threshold are 

considered redundant and discarded. This drastically reduces the volume of data input 

to the model while preserving information about all important events. 
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Traditional deep neural networks, such as the standard InceptionV3, demonstrate 

high accuracy but operate as "black boxes." This means that we only see the input data 

(frame) and the result (e.g., "anomaly"), but the internal decision-making process 

remains opaque. For critical applications, such as security, this is unacceptable because 

an operator cannot trust a system that does not explain its conclusions and may be prone 

to errors due to imbalanced data or artifacts [7]. 

The model's task is not only to classify the frame but also to generate human-

understandable explanations: specifically which areas of the image and which visual 

features most influenced the decision. This transforms the model from a "black box" 

into a "glass" or "transparent box." 

Interpretability is critically important for building trust and practical 

implementation. When the system detects an anomaly, the operator receives not just an 

alarm signal but visual confirmation: a heatmap that highlights the conflict area, a 

suspicious object, or an unusual action. This allows the operator to quickly verify the 

validity of the alarm and make a decision, avoiding false alarms. Thus, a bridge is 

formed between the high accuracy of the algorithm and human understanding. 

Grad-CAM is one of the key methods in XAI-Inv3. It works based on gradient 

analysis. When the network makes a prediction (e.g., "fight"), Grad-CAM calculates 

which pixels in the last convolutional layer are most "responsible" for this prediction. 

Technically, the method computes a weighted sum of the feature maps of the last 

convolutional layer, where the weights are determined by the gradient of the target 

class with respect to these feature maps. The result is a heatmap—a semi-transparent 

overlay on the original image where "hot" colors (red, yellow) indicate the most 

important areas. 

The Guided Backpropagation method complements Grad-CAM. It takes a more 

detailed approach to interpretation. This method also analyzes gradients but propagates 

backward through the network down to the input pixel level. Its key feature is filtration: 

it preserves only those gradients that have a positive influence on the predicted class 

and discards negative ones. As a result, a clear, highly detailed image is generated, 

where specific contours and textures (e.g., the silhouette of a weapon, outlines of 
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people in a fight) that contributed to the classification are prominently highlighted. 

Together, these two methods provide a powerful and multi-level interpretation 

tool. Grad-CAM offers a general understanding of event localization, showing "where" 

the anomaly occurred (e.g., a group of people in the left corner of the frame). Guided 

Backpropagation elaborates on this by detailing "what" exactly in that area attracted 

the network's attention (individual objects). This combination ensures the most 

comprehensive and understandable explanation of the model's decision. 

XAI-Inv3 is fundamentally based on the time-tested InceptionV3 architecture. 

This means it retains all its advantages: Inception modules for efficient multi-scale 

feature extraction, dimensionality reduction techniques to combat overfitting, and 

auxiliary classifiers to improve convergence during deep network training. This 

foundational structure ensures high performance in image classification tasks, forming 

the backbone of the entire system. 

Conclusions and Future Research Directions. 

It can be concluded that the proposed approach serves as a highly efficient 

preprocessing mechanism that eliminates informational noise and drastically reduces 

computational costs. This enables XAI-Inv3 to process only relevant data, enhancing 

both speed and potentially classification accuracy by focusing on significant events. 

Together, they form an integrated pipeline optimized for both processing speed and 

analytical quality. 

This research is valuable for the development of security systems and automated 

video monitoring, as well as for the design of smart cities. By ensuring high accuracy, 

efficiency, and, most importantly, interpretability of algorithmic operations, the 

proposed methodology lays the groundwork for closer and more effective human–

artificial intelligence collaboration in critical domains. Future research may focus on 

adapting the methodology for real-time operation and implementation in embedded 

systems. 
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