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Abstract. Contemporary video surveillance infrastructure produces substantial data streams,
posing challenges for efficient real-time processing. Current automated anomaly detection
techniques frequently demand extensive computational resources and function as opaque "black box"
systems, constraining their deployment in critical domains including public security and safety
monitoring. This work introduces an integrated methodology tackling two fundamental limitations:
ineffective handling of superfluous visual data and lack of algorithmic transparency in artificial
intelligence systems. The proposed framework merges an advanced informative frame selection
technique with interpretable detection model processing. The initial phase employs a hybrid
optimization approach integrating InceptionV3 convolutional neural networks with genetic
algorithms, achieving 70-85% data reduction while preserving 98% recall performance. The
subsequent phase delivers not only anomaly classification but also produces comprehensible decision
explanations via explainable Al (XAl) integration, specifically utilizing Grad-CAM and guided
backpropagation techniques. Experimental evaluation on benchmark datasets confirms the
superiority of the proposed method over contemporary solutions. Results demonstrate 3-5%
enhancement in classification precision coupled with reduced computational requirements.
Additionally, the system generates visual decision rationalizations through heatmap representations,
thereby increasing operational trustworthiness. This integrated framework facilitates the deployment
of effective real-time video analysis systems that provide comprehensive decision transparency and
operational accountability.

Keywords: artificial intelligence, video surveillance, information systems, genetic algorithm,
modeling, computer vision, video surveillance data.

Introduction.
Modern video surveillance systems generate vast amounts of data, making manual
analysis practically impossible. Automated detection of anomalous events, particularly

acts of violence, using artificial intelligence methods faces two key challenges: the
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inefficiency of processing irrelevant data and the "black box" nature of deep neural
networks' decision-making, where human operators cannot understand the machine's
logic. This undermines trust in the system and complicates its deployment in critical
domains such as public security and facility protection.

Analysis of recent studies on improving the efficiency of video surveillance
systems shows significant progress in enhancing detection accuracy. However, key
challenges in computational efficiency and result interpretability remain unresolved. A
major step in addressing this problem has been made in the work of Salman, et al. [1].

Research in recent years can be broadly divided into three main categories. The
first category comprises methods based on deep learning. Studies [2-4] demonstrate
the high effectiveness of architectures based on 3D convolutions and transformers in
anomaly detection tasks. However, these approaches require processing the complete
video stream, leading to excessive computational costs. Models often operate as "black
boxes," complicating their application in critical systems where decision-making
transparency is essential.

The second category involves approaches to key frame selection. Works [5-6]
propose methods for processing and compressing video data, particularly based on
motion analysis. Despite reducing data volume, these methods often miss important
frames with sudden anomalies unrelated to motion. Other studies propose machine
learning methods for frame selection, but they fail to consider feature optimization at
the individual frame level, limiting their effectiveness. The third category addresses
the processing of massive data streams, real-time operation, and compliance with
decision transparency requirements. This issue is examined in works [6-7]. However,
these solutions often overlook optimization at the individual node level, leading to
inefficient resource utilization.

The aim is to develop a comprehensive approach for automated anomaly detection
in video recordings by combining an efficient key frame selection method with an
interpretable deep learning model (XAI-Inv3), aimed at overcoming the limitations of
modern video analytics systems regarding computational inefficiency and insufficient

decision-making transparency.
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Research Objectives:

1. To conduct a review of contemporary approaches to video anomaly detection,
identifying their shortcomings, particularly the high computational costs
associated with processing redundant data.

2. To define and implement a fitness function that ensures a balance between
classification accuracy and the number of selected features.

3. To propose a frame comparison mechanism based on calculating the Euclidean
distance between optimized feature vectors and adaptive threshold
determination for identifying key frames.

Research Results.

To overcome these limitations, a methodology is proposed that utilizes an
intelligent filter to select only the most important frames containing potential
anomalies from the video stream, along with tools for analyzing the selected frames
for both event classification and providing human-understandable explanations of the
decisions made. This approach significantly reduces computational load and enhances
the transparency of the system's operation.

This methodology combines the power of the InceptionV3 convolutional neural
network for extracting high-level features from each frame and a genetic algorithm for
optimizing the selection of the most relevant features. The genetic algorithm iteratively
evolves the set of features, maximizing accuracy while minimizing their quantity. The
final stage involves calculating the Euclidean distance between consecutive frames
based on the selected features and selecting those frames whose distance exceeds a
dynamic threshold, indicating a significant change in the scene.

The system model is built on the InceptionV3 architecture, but its key aspect is
modification for interpretability (eXplainable Al, XAI). It integrates gradient-based
methods such as Grad-CAM (Gradient-weighted Class Activation Mapping) and
guided backpropagation. These methods allow for the visualization, in the form of
"heat maps," of the image regions that most influenced the model's prediction (e.g., a
fist, a weapon, chaotic motion), providing the operator with a visual and

understandable explanation of why an event was classified as anomalous.
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In this methodology, the genetic algorithm begins by creating an initial

n

population. Each individual in this population, called a "chromosome," is a binary
vector. The length of the vector corresponds to the total number of features extracted
from the frame by the InceptionV3 convolutional neural network. Each bit in the
chromosome (gene) indicates the inclusion (1) or exclusion (0) of a specific feature
from subsequent analysis. Thus, the chromosome represents a compactly encoded
subset of candidate features.

Each chromosome is evaluated using a fitness function. This function is the most
critical component as it guides the direction of evolution. It not only maximizes
classification accuracy but also incorporates a penalty coefficient (1) for an excessively
large number of selected features. Mathematically, this is expressed as:

F(c)=A()—AxD(c)

where,

A (c) is the classification accuracy demonstrated by the model (e.g., XAI-Inv3)
when using not the full set of features but only the subset encoded in the chromosome
as input. It measures how well the model can detect anomalies using only those features
for which the value in chromosome c is set to 1.

D (c) is the total number of features selected (activated) in chromosome c. This
is the count of ones (1) in the binary vector of the chromosome. For example, if a
chromosome has the form [1, 0, 0, 1, 1, 0], then D (c) = 3.

This ensures a search for a compromise between high accuracy and efficiency.
Based on the obtained fitness scores, selection occurs: chromosomes with a higher
value have a greater probability of being chosen for "reproduction" using a "roulette
wheel" or tournament selection mechanism.

The selected "parent" chromosomes undergo genetic operators. The crossover
operator exchanges parts between two chromosomes, creating new "offspring" with a
combination of parental features. The mutation operator randomly changes individual
bits in the chromosomes (with a low probability), introducing new genetic information
into the population and preventing stagnation in local optima. This cycle (evaluation,

selection, crossover, mutation) repeats for a specified number of generations until a
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suboptimal set of features is found that maximizes the value of the fitness function.
After the genetic algorithm has determined the optimal subset of features for each

frame, the next step is to quantitatively measure the similarity between consecutive

frames. For this purpose, the Euclidean distance is used. Let two vectors of optimized

features, determined by the genetic algorithm for frames i and j, be denoted as:

Fo= (F 2 59) 8 = (R0 2. £9),

where, d — the number of features selected in the chromosome.

The Euclidean distance D;; between these vectors is calculated by the formula:

d
k k
Dij — Z(fl( )_f}( ))2_
k=1

where,, fi(k) and fj(k)— are the values of the k th feature for frames i and j
respectively.
For each feature k the difference ( fi(k) — fj(k)), is calculated and then squared to

eliminate negative values and amplify large discrepancies.

A critical aspect is determining the threshold value that separates key frames from
redundant ones. A fixed threshold is ineffective due to the variability in recording
conditions. An adaptive approach can be employed: the threshold is calculated
dynamically based on the statistics of the first N frames of the video (e.g., 1000). The
average Euclidean distance for this sample is computed, and then the threshold value
is set as a multiple of this average. This allows the system to automatically adapt to the
specific video.

The final classification process is relatively simple yet effective. For each pair of
consecutive frames, the Euclidean distance between their optimized feature vectors is
calculated. If this distance exceeds the computed dynamic threshold, the second frame
in the pair is marked as a key frame. All frames with distances below the threshold are
considered redundant and discarded. This drastically reduces the volume of data input

to the model while preserving information about all important events.
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Traditional deep neural networks, such as the standard InceptionV3, demonstrate
high accuracy but operate as "black boxes." This means that we only see the input data
(frame) and the result (e.g., "anomaly"), but the internal decision-making process
remains opaque. For critical applications, such as security, this is unacceptable because
an operator cannot trust a system that does not explain its conclusions and may be prone
to errors due to imbalanced data or artifacts [7].

The model's task is not only to classify the frame but also to generate human-
understandable explanations: specifically which areas of the image and which visual
features most influenced the decision. This transforms the model from a "black box"
into a "glass" or "transparent box."

Interpretability 1is critically important for building trust and practical
implementation. When the system detects an anomaly, the operator receives not just an
alarm signal but visual confirmation: a heatmap that highlights the conflict area, a
suspicious object, or an unusual action. This allows the operator to quickly verify the
validity of the alarm and make a decision, avoiding false alarms. Thus, a bridge is
formed between the high accuracy of the algorithm and human understanding.

Grad-CAM is one of the key methods in XAI-Inv3. It works based on gradient
analysis. When the network makes a prediction (e.g., "fight"), Grad-CAM calculates
which pixels in the last convolutional layer are most "responsible" for this prediction.
Technically, the method computes a weighted sum of the feature maps of the last
convolutional layer, where the weights are determined by the gradient of the target
class with respect to these feature maps. The result is a heatmap—a semi-transparent
overlay on the original image where "hot" colors (red, yellow) indicate the most
important areas.

The Guided Backpropagation method complements Grad-CAM. It takes a more
detailed approach to interpretation. This method also analyzes gradients but propagates
backward through the network down to the input pixel level. Its key feature is filtration:
it preserves only those gradients that have a positive influence on the predicted class
and discards negative ones. As a result, a clear, highly detailed image is generated,

where specific contours and textures (e.g., the silhouette of a weapon, outlines of

ISSN 2663-5712 193 www.sworldjournal.com



YR

YA i
SWorldJournal Issue 33 / Part 1 4:\"'3} )

S
- |

people in a fight) that contributed to the classification are prominently highlighted.

Together, these two methods provide a powerful and multi-level interpretation
tool. Grad-CAM offers a general understanding of event localization, showing "where"
the anomaly occurred (e.g., a group of people in the left corner of the frame). Guided
Backpropagation elaborates on this by detailing "what" exactly in that area attracted
the network's attention (individual objects). This combination ensures the most
comprehensive and understandable explanation of the model's decision.

XAl-Inv3 is fundamentally based on the time-tested InceptionV3 architecture.
This means it retains all its advantages: Inception modules for efficient multi-scale
feature extraction, dimensionality reduction techniques to combat overfitting, and
auxiliary classifiers to improve convergence during deep network training. This
foundational structure ensures high performance in image classification tasks, forming
the backbone of the entire system.

Conclusions and Future Research Directions.

It can be concluded that the proposed approach serves as a highly efficient
preprocessing mechanism that eliminates informational noise and drastically reduces
computational costs. This enables XAlI-Inv3 to process only relevant data, enhancing
both speed and potentially classification accuracy by focusing on significant events.
Together, they form an integrated pipeline optimized for both processing speed and
analytical quality.

This research is valuable for the development of security systems and automated
video monitoring, as well as for the design of smart cities. By ensuring high accuracy,
efficiency, and, most importantly, interpretability of algorithmic operations, the
proposed methodology lays the groundwork for closer and more effective human—
artificial intelligence collaboration in critical domains. Future research may focus on
adapting the methodology for real-time operation and implementation in embedded
systems.
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