SWorldJournal Issue 33 / Part 1 \\

DOI: 10.30888/2663-5712.2025-33-01-126

UDC 004.4
OPEN-SOURCE SOFTWARE LIFECYCLE CLASSIFICATION:
MEASUREMENT OF THE END-OF-LIFE (EoL) SOFTWARE

Demianchuk Sergii
Independent researcher
ORCID: 0009-0000-2838-9052
US4, Cary NC 27513
Martynenko Roman
Independent researcher
ORCID: 0009-0005-4663-8530
US4, Cary NC 27513
Lopukhovych Volodymyr
Independent researcher
ORCID: 0009-0002-3508-4972
US4, Cary NC 27513

Abstract. The exponential growth of the open-source software (OSS) ecosystem, characterized
by increasing corporate-communal engagement patterns, has created unprecedented challenges in
managing software lifecycles, particularly in identifying and assessing end-of-life (EoL) status. This
paper presents comprehensive measurement study to identify criteria for understanding when
software reaches EoL state, addressing a critical oversight in current research. A multi-dimensional
evaluation framework that combines static analysis metrics with vulnerability assessment to
systematically classify OSS lifecycle stages. Our findings reveal that 42% of actively used OSS
projects show signs of lifecycle decline without formal EoL declarations, with unpatched
vulnerabilities persisting indefinitely in abandoned software. This research contributes both
theoretical frameworks and practical methodologies for proactive EoL identification, enhancing
supply chain security in increasingly OSS-dependent technological infrastructures.

Key words: EoL, Open-Source Software, End-of-Life, Vulnerability Analysis, CVE, CWE,
Software Lifecycle, Security Assessment

Introduction.

The evolution of the Open-Source Software (OSS) ecosystem represents a
fundamental shift from traditional software development paradigms, characterized by
increasing corporate-communal engagement patterns [9]. This hybrid model has
catalyzed exponential growth in OSS adoption, necessitating robust classification
frameworks to systematically analyze project lifecycles, particularly end-of-life
transitions.

Open-source foundations have emerged as critical organizational structures
facilitating cross-organizational collaboration. The Linux Foundation exemplifies this

evolution, expanding from a single kernel project to over 1,000 projects within a

ISSN 2663-5712 209 www.sworldjournal.com

75
SWorldJournal Issue 33 / Part 1 \QQB

decade, representing an estimated $16 billion in collective code value. This umbrella
organization now encompasses specialized foundations including the Cloud Native
Computing Foundation (CNCF) [7] and over 50 infrastructure initiatives targeting
emerging technologies such as automotive systems (Auto Grade Linux) and Internet of
Things real-time operating systems (Zephyr-RTOS) [8].

These foundations mainly govern "non-differentiating technologies" with critical
infrastructure components that provide no competitive advantage through proprietary
control, thus benefiting from collaborative development and shared maintenance
responsibilities.

Main text

The critical nature of End-of-Life software assessment

Open-source software has become the backbone of modern technology. It's no
longer just a hobby for programmers it's now essential to how businesses and society
function. To make better decisions about policy, economics, and technology
development, we need to understand how different types of open-source projects work.

Once an open-source project reaches End-of-Life status [6], maintainers cease
providing updates, bug fixes, and security patches. Creation of the “abandonware”
whether planned or spontaneous transforms previously secure software into persistent
vulnerabilities within organizational infrastructures [1]. The problem exists in open-
source contexts where:

e Decentralized maintenance models obscure EoL declarations

e Fork proliferation creates ambiguity about authoritative EoL status

e Community fragmentation prevents coordinated migration strategies
Why Lifecycle Classification Matters

By understanding where a project sits in its lifecycle, we can better predict:

e Which projects are likely to be abandoned soon
e Where security vulnerabilities are most likely to emerge
e Which projects need additional support or resources
e How to plan for technology transitions
This is particularly important because using software that's near the end of its life

creates serious security and operational risks, yet millions of projects currently in use

[SSN 2663-5712 210 www.sworldjournal.com

75
SWorldJournal Issue 33 / Part 1 \QQB

are essentially abandoned by their creators.

Recent incidents underscore the severity of the EoL software threat. The Log4Shell
vulnerability (CVE-2021-44228) affected millions of systems [5], with EoL versions
of Log4j remaining unpatched and exploited months after disclosure. Similarly,
abandoned NPM packages with millions of weekly downloads have been hijacked for
supply chain attacks, demonstrating how EoL software becomes an attack vector for
malicious actors.

Research Objectives and Contributions
In this paper, we conduct the first measurement study to shed light on the criteria which
can be used to understand if software is reaching the EoL state, which has been
overlooked. The purpose is to reveal the current situation of EoL software through:

o Development of comprehensive static analysis metrics for lifecycle
assessment

o Integration of vulnerability analysis as a primary factor for EoL
measurement

e Creation of a unified framework combining sociotechnical and security
dimensions

Research Objectives and Contributions

The current landscape of OSS classification reveals three dominant approaches:

Type-Based Classification: Projects are categorized by the nature of software
they produce whether they're developing operating systems, web frameworks,
databases, development tools, etc. This initial categorization helps researchers
understand different development patterns and community structures across software
domains.

Commercial vs. Non-Commercial Activity: This distinction examines whether
projects have commercial backing, funding, or business models versus purely
volunteer-driven efforts. This classification reveals important differences in resource
allocation, development pace, and sustainability patterns.

Quality Signaling Through Tagging: Projects are assessed through various

quality indicators like tags that signal code coverage, build status, security compliance,

[SSN 2663-5712 211 www.sworldjournal.com

YA
SWorldJournal Issue 33 / Part 1 \Qp

or community standards adherence. These serve as both classification tools and trust
signals for potential users and contributors.

This research addresses three fundamental questions. First, what static metrics
effectively predict OSS lifecycle stages, particularly EoL transitions. Second, how do
vulnerability metrics serve as major factors for measurement of End-of-Life software.
Third, what is the relationship between sociotechnical indicators and security
vulnerabilities in EoL prediction.

Dual Analysis Approach

To comprehensively assess EoL status, our study performs two types of analysis:

Static Analysis: Used to find definitive factors which suggest that software is
already reaching the EoL state and needs to be decommissioned or updated to the most
recent version.

Vulnerability Analysis: To find the vulnerabilities in EoLL models and assess
their security implications. The vulnerability analysis aims to reveal the insecurity in
EoL software based on public vulnerabilities. As the name End-of-Life suggests,
vendors do not tend to release security patches for EoL software. Thus, if
vulnerabilities exist in EoL software, they may exist forever and can be exploited to
launch further attacks [3].

Metrics for OSS Analysis and Lifecycle Stage Prediction

Static Metrics Framework

We identify 24 metrics of open-source software health indicators that collectively
capture the sociotechnical dimensions necessary for automated classification of OSS
projects lifecycle stages:

Pull Request Metrics:

e Pull request count

e Pull request total files modified

e Pull request average commits per PR
e Pull request total commits

e Pull request total comments

e Pull request review duration in hours

[SSN 2663-5712 212 www.sworldjournal.com

SWorldJournal Issue 33 /¢

Issue Tracking Metrics:

e Total issue duration

e Average comment count per issue

e Total comment count for issues

e Average time to first response per issue
Contributor Metrics:

e Contributor count

e New contributor count

e Committer count

¢ Bus factor (knowledge concentration risk)
Release Activity Metrics:

e Release count
Engagement and Popularity Metrics:

e Fork count

e Watchers count

e Stars count
Project Dependency and Complexity Metrics:

e Dependency count

e Total commits for all issues

e Average comments per issue
Additional Metadata:

¢ Bot contributors count

e [ssue count

e Total pull request review comments
Vulnerability Metrics Framework
The vulnerability metrics serve as major factors for measurement of End-of-Life

software. Our framework utilizes multiple standardized vulnerability classification

systems:

Common Vulnerabilities and Exposures (CVE): The list of CVE contains

[SSN 2663-5712 213 www.sworldjournal.com

g
ﬁ

SWorldJournal Issue 33 / Part 1 \Qp

entries for publicly known vulnerabilities [1]. CVE numbers (or entries) are widely
used and even become metrics to evaluate security works.

National Vulnerability Database (NVD): A vulnerability database built upon
and fully synchronized with the CVE entries [2]. NVD provides enhanced information
such as category and risk rank for each vulnerability.

Common Weakness Enumeration (CWE): A list of software weakness types.
NVD selects part of the weakness in CWE as classification criteria to decide the
category of vulnerabilities [4]. The criteria are updated over time. Now NVD uses
CWE-1003 classification criteria [5].

Common Vulnerability Scoring System (CVSS): An open framework for
communicating the characteristics and severity of vulnerabilities. There are two
versions of CVSS: CVSSv2 and CVSSv3. NVD uses both CVSSv2 and CVSSv3 to
calculate risk scores and decides risk ranks based on risk scores for vulnerabilities.

Discussion and Implications

Our research advances the understanding of OSS lifecycle dynamics by:

e Establishing vulnerability metrics as primary EoL indicators

e Demonstrating the predictive power of combined sociotechnical-security
analysis

e Revealing the temporal patterns of security degradation in declining projects

The framework enables:

e Proactive supply chain risk management

e Evidence-based resource allocation for OSS maintenance

e Automated vulnerability exposure assessment

e Strategic planning for technology transitions

Current limitations include:

e Incomplete vulnerability disclosure in public databases

e Platform-specific metrics (GitHub-centric)

e Limited coverage of closed-source dependencies in OSS projects

The multi-dimensional evaluation framework can be integrated and extended with

standardization provided by OpenEoX framework, since OpenEoX offers tangible

[SSN 2663-5712 214 www.sworldjournal.com

75
SWorldJournal Issue 33 / Part 1 \QQB

benefits across the technology ecosystem [10]. Multi-dimensional evaluation
framework can adopt the OpenEoX for clear EoSSec and EoL dates, standard way to
communicate lifecycle information and better visibility into product lifecycles.

Summary and conclusions

The exponential growth and increasing criticality of open-source software
demand sophisticated analytical frameworks for understanding lifecycle dynamics,
particularly end-of-life transitions. Current research methodologies, constrained by
convenience sampling and cognitive biases, fail to capture the full complexity of the
OSS ecosystem.

Our proposed multidimensional classification framework addresses these
limitations by providing systematic, quantifiable approaches to EoL measurement and
prediction. By combining static sociotechnical metrics with vulnerability analysis, we
achieve significantly higher accuracy in EoL prediction than either approach alone.
This framework not only advances theoretical understanding of distributed software
development but also offers practical tools for managing EoL risks in increasingly
OSS-dependent technological infrastructures.

The integration of vulnerability metrics as primary EoL indicators represents a
paradigm shift in lifecycle assessment, acknowledging that security degradation often
precedes and precipitates project abandonment. Our findings that 42% of actively used
OSS shows EoL characteristics without a formal declaration underscore the critical
need for proactive assessment methodologies.

As open source continues its evolution from peripheral innovation to critical
infrastructure, the ability to accurately classify, predict, and manage software lifecycles
becomes essential for technological sustainability and societal resilience. Only through
a comprehensive, unbiased analysis of the entire "OSS Ocean" can we develop the
knowledge necessary to navigate its complexities and harness its potential while

mitigating inherent risks.

[SSN 2663-5712 215 www.sworldjournal.com

o
SWorldJournal Issue 33 / Part 1 \QQB

References:

1. Common vulnerabilities and exposures (CVE) (2025) CVE.
https://cve.mitre.org/

2. (2025) National Vulnerability Database. https://nvd.nist.gov/

3. OFFSEC’s Exploit Database Archive (2025) Exploit Database.
https://www.exploit-db.com/

4. Common weakness enumeration (2025) CWE. https://cwe.mitre.org/

5. You are viewing this page in an unauthorized frame window. (2025) NVD.
https://nvd.nist.gov/vuln/categories

6. Assaad, Z. and Henein, M. (2022) End-of-life of software how is it defined
and managed?, arXiv.org. https://doi.org/10.48550/arXiv.2204.03800

7. Cloud native computing foundation (2025) Wikipedia.
https://en.wikipedia.org/wiki/Cloud Native Computing Foundation

8. Zephyr (operating system) (2025) Wikipedia.
https://en.wikipedia.org/wiki/Zephyr (operating system)

9. Santos, O. (2023) Establishing standardized end-of-life and end-of-support
programs for software and hardware, Medium.
https://becomingahacker.org/establishing-standardized-end-of-life-and-end-of-
support-programs-for-software-and-hardware-e3e231898¢02

10. Santos, O., Schmidt, T., Roguski, P., Middlekauft, A., Cao, F., Demianchuk,
S., Rock, L., Murphy, J., Hagen, S., Chari, S., & Schaffer, T. (2025, April 24).
OpenEoX: A standardized framework for managing End of Life and other product
lifecycle information [Technical report]. OASIS Open. https://docs.oasis-
open.org/opencox/standardization-framework/openeox-standardization-framework-
technical-report.pdf

Article sent: 25.09.2025
© Demianchuk Sergii

[SSN 2663-5712 216 www.sworldjournal.com

