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Abstract. Due to the influence of a large number of interference contributions contained in the
recorded ECG signal, advanced techniques and algorithms are commonly used to extract the useful
signal in noise background environment. However, existing filtering techniques have a large number
of problems when using them for ECG signal processing. One of the main requirements is to develop
such technique that would allow for the gradual measured data to carry out the accumulation and
averaging procedures to suppress effectively the interferences. In addition, this technique should also
be invariant to the typical random ECG signal time shifts that sufficiently destroy coherent signal
accumulation. It should also be able extracting important information about the phase coupling
arising due to the nonlinear processes in cardiovascular activity. One of such signal processing
technique having noted features is bispectrum-based data processing technique. A novel technique of
adaptive nonlinear filtering based on bispectral signal processing is proposed in the present paper.
Suggested technique provides an average improvement by 1 dBW of the filtering performance in the
range of signal-to-noise ratio (SNR) variations from —20 to 0 dBW. However, at a higher SNR, the
proposed technique provides a worse result due to the contribution of distortions to the initial signal.
Note, that suggested bispectrum-based filter is more effective to be used to remove additive gaussian
noise components from the ECG signal at a low SNR. The advantage of the proposed technique is
invariance to non-stationary changes in the waveform of the ECG signal which makes the proposed
method adaptive and robust to any changes.
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Introduction.

Due to the presence of a large number of interference contributions in the ECG
signal, various advanced techniques and algorithms are used to extract the useful signal
in noise environment. Such common techniques as independent component analysis
technique [1], filtering technique [2], their combinations [3] to achieve the best result
[4], wavelet transform [5], techniques of decomposition of signals into empirical
modes [6], correlation techniques [7], as well as non-adaptive methods [8] are
widespread today. In turn, they can be divided into single-channel methods [9] and
multi-channel methods [10,11]. Standard Kalman filters (KF) were built to process
stationary processes. However, since medical signals are more related to non-stationary

processes and they have a nonlinear nature, modifications of KF such as the extended
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Kalman filter (EKF) are more often used to implement extracting an ECG signal from
a mixture of a useful signal and noise. Its peculiarity is the following. The result is the
separation of ECG components while other components and interference components
of the ECG signal are considered as noise [12]. This approach allows for the evaluation
of the noise of the original signal value with new signal values. Therefore, this method
is actively used in long-term monitoring as it allows adapting to each specific case [13]
for the removal of nonlinear interference.

There is also another modification of this technique called extended Kalman
smoothing (EKS). It is based on the EKF using inverse smoothing [14,15]. The ECG
signal is processed by determining the average value of the ECG component heart rate
which is then approximated using a Gaussian kernel. The signal is then amplified using
a gain factor which is used to correlate the observed signals and taking into account the
dynamics of the system. However, these filters are not adaptive to non-stationary
changes in the ECG signal in which the shape of the QRS complexes may change
during signal recording due to the influence of other interference contributions. Some
QRS complexes may be removed after using this type of filter. However, it will lead
to further errors in ECG signal processing.

There are also independent component analysis techniques. Their concept is based
on the fact that the source is statically independent while the ECG signal is a mixture
of signals at the output [16]. To estimate each individual component of the ECG signal,
a separation matrix is used. It allows by multiplication to obtain separate estimates for
each separate source of the ECG signal. It should be noted that the separation matrix
cannot be calculated exactly. Therefore, when using blind source separation approach
the approximate estimates of the original source signals are obtained. These techniques
belong to the class of second-order estimates which are called Independent Component
Analysis (ICA) [17-18]. There is also another class of these methods called as periodic
component analysis or periodic component analysis (tCA) [19-20]. The main problem
when using ICA methods is that after obtaining estimates of individual sources of the
ECG signal, it is impossible to reliably determine the order of the sources, as well as

the scaling of the sources and their sign. However, a large number of modifications
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have been introduced that based on these algorithms. Wavelet transform techniques are
also actively used. They are also implemented as methods of nonlinear filtering of ECG
signals combining them with other nonlinear filtering methods [21], thereby replacing
Kalman filters or using them in combination [21]. In [22], the effectiveness of using
simlet wavelets for preprocessing of ECG signals has been demonstrated in order to
reduce the level of noise in the initial signal. However, this method is not adaptive to
nonlinear changes in the signal and to implement such adaptability. It is necessary to
use modified threshold values, adaptive thresholds or hard thresholds which will allow
when using the proposed approach to remove noise components from the ECG signal
as much as possible.

Taking into account these peculiarities and problems, the wavelet transform is
also not suitable for solving the problem of filtering ECG signals due to the need for
preliminary calculations. Accordingly, it is necessary to determine an analysis
technique that would allow for the gradual accumulation and averaging of information
to suppress the maximum amount of interference arising due to such accumulation. It
should also be invariant to random signal shifts. It should also have information
exclusively about the phase coupling properties contained in the nonlinear ECG
signals. One of such ECG signal analysis technique is bispectrum-based signal
processing.

Bispectrum is a complex-valued function of two frequency variables. Bispectrum
is given by its bimagnitude and biphase functions. The estimate of the bispectral
density (third-order spectral density or cumulative spectrum) allows us to correctly
describe the statistical characteristics of the observed process and determine the
presence of correlations between spectral components. The main difference between
the bispectrum and the energy spectrum is the preservation of phase information and
the possibility of its restoration. Expression for the bispectrum estimate can be written

as discrete function of the following triple product form:

B.(p.q)= |B.(p.q)lexp[jo(p.q)] = <X, (p)X,(a)X*,(P+4)>y> (1)

where Bx(p, q) is a complex-valued function of two discrete frequency variables;

IBx (p,q)| 1s the bimagnitude; ¢(p,q) is the biphase; <...> denotes ensemble averaging;
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p =-I+1,...,]-1 and g= —I+1,...,I-1 are the frequency indices; Xy(...) is the discrete

SWorldJournal

Fourier transform computed for m-th realization of the process under study;
m = 1, 2,...,M is the number of observed realization; symbol * denotes complex
conjugation; j = (-1)"2

Note the useful features of bispectrum. First, bispectrum of gaussian noise tends
to zero. Second, bispectrum is able to extract phase coupling contributions contained
in nonlinear process. Third, bispectral signal statistical processing can provide coherent
accumulation for the number of signal realizations that are randomly shifted during the
averaging time interval.

Materials and Methods

An open-source electrophysiological toolbox (OSET) [23] has been developed for
the generation and study of ECG signals. This toolbox includes tools such as ECG
signal generators and noise generators based on real-life signal models. OSET is a
collection of open-source code for generating, modeling, processing, and filtering
biological signals released in June 2006. The toolbox is distributed under the Berkeley
Software Distribution (BSD) license and can be used freely. Figure 1 shows an example

of a generated ECG signal.

Generated ECG signal

ECG signal amplitude (V)
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Figure 1 - Generated ECG signal
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Authoring

The OSET system allows to create a number types of noises, namely white noise,

colored noise, simulate noises caused by muscle contractions, electrode movement, and
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baseline drift. There is also the possibility of generating combined noise which consists
of the previous ones. For example, it is possible to simulate the simultaneous
superposition of interference caused by electrode movements, muscle contraction, and
baseline drift. This combined interference can be used when testing the noise immunity
of the developed methods or testing adaptive filters to suppress these classes of noise
that arise when recording real data. Therefore, the system is flexible for studying the
ECG signal processing techniques.

Figure 2 shows an example of generating an ECG signal with superimposed white
noise with a signal-to-noise ratio of 30 dB, as well as a combination of noises caused
by muscle contraction, electrode movement, and baseline drift, and also with a signal-

to-noise ratio of 30 dB.
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Figure 2 - Mixture of generated signal and combined noise
Authoring

Using this ECG signal generation system, it is possible to study the efficiency of
filtering since the SNR is known, as well as the parameters of the signals themselves
which will also allow investigating the degree of distortions introduced by filtering into
the shape of the initial signals.

Bispectral estimation of the ECG signal is performed at the first stage of data
processing. To do this, bispectral averaging is performed in the Fs/2 window of the

signal with the same step, where Fs is the sampling frequency of the ECG signal. In
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this case, noise components are removed during such accumulation. Figure 3

demonstrates the averaged bimagnitude estimate (1) for the ECG signal in the form of
a contour image. Figures 4 and 5 demonstrate real and imaginary parts of bispectrum

estimate (1), respectively.
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Figure 3 - Bimagnitude estimate computed for ECG signal
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Figure 4 - Real part of bispectrum estimate computed for ECG signal
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Figure S - Imaginary part of bispectrum estimate computed for ECG signal
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At the second data processing step, the filter mask is calculated. In order to
calculate the mask for filtering, the real and imaginary parts of the bispectral estimate
are used. To obtain a mask from the real or imaginary part, the matrix is converted into

a gray scale image. Figure 6 demonstrates the example of the matrix conversion.

(a) (b)

Figure 6 - Example of transform into the gray scale image performed for

real (a) and imaginary (b) part of bispectral estimate. The images are mirrored

to their counterparts in Fig. 4 and 5, and for a larger expansion along the axes

Authoring

ISSN 2663-5712 198 www.sworldjournal.com



SWorldJournal Issue 33/ Part 2 (%

After computations, correspondent matrices are obtained in the image intensity
withing the range from 0 to 1. In order to compute the mask for the filter, it is necessary
to convert the image into binary format so that the final matrix contains intensity values
of either 0 or 1. Accordingly, filtering will occur in intensity zones contained 1, and no
filtering will occur in zones contained 0. A threshold of 0.5 is selected to calculate the
binary image. Figure 7 shows the example of computing binary matrices for the real

and 1maginary parts of bispectrum estimate.

o

() (b)

Figure 7 - Example of transform to the binary images performed for real (a) and
imaginary (b) part of ECG signal bispectrum estimate. The images are mirrored

to their counterparts in Fig. 4 and 5, and for a larger expansion along the axes

Authoring

After computing these matrices, the signal is filtered. At the very beginning
processing step, Fs/4 zero values are added to the left and right of the signal from the
signal. This is necessary because the filtering must be performed from the very
beginning of the signal to the very end. After that, a sliding window is determined
corresponding to the size of the matrix of the bispectral estimate. It is equal to Fs/2.
This window moves along the signal with a step of one sample, and the bispectrum
estimate is calculated for the signal that falls into the window. After that, the
bispectrum estimate obtained for the local fragment of the signal is divided into real

and imaginary parts. Obtained real and imaginary local parts are multiplied by binary
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images as demonstrated in Fig. 7. After that, the obtained matrix is filtered by an

averaging filter with a window size of 5 x 5 samples. Next, a new matrix of local

bispectral estimate is formed from the filtered matrices. A signal is converted using the

inverse transform performed from bispectral to the time space. Next, the obtained

signal is averaged over the entire range, and one value is stored into the central element

of the window in a new array that will be responsible for the filtered signal. Next, the

window 1is shifted by one element and all processing steps are repeated until the

processing of the entire signal is completed. At the very end of the data processing,

zero values that were added at the very beginning are removed. Below a parametric

method for signal recovery from bispectral transform [24] is represent.

Algorithm 1. Signal reconstruction from bispectrum (RecBisp)

1
2
3
4
5.
6
7
8
9

11

. Initialize Alfa[KxK], Beta[KxK] to zeros
. Compute md2 « round(K / 2)
.Fori=1to md2+1

Forq=1toiand (q+i-1<md2+1)
Beta[i,q] < phase of Bisp[i,q]
Alfa[i,q] < magnitude of Bisp[i,q]

End For

. End For
. Set Alfa[1,1] « small value if zero

10.

Compute d[1] < cube root of Alfa[1,1]

. Compute d[2] « sqrt(Alfa[2,1]/d[1]) if d[1] #0
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

Initialize recf2[1] « exp(—j-Beta[1,1])
If usenoise = 1, set recf2[1:2] « exp(j-noisephase[1:2])
For p =2 to md2+1
For q =1 to p while (p+q—1 < md2+1)
Update d[p], d[p+q—1] based on Alfa and noise
Compute reincr «<— exp(j-(arg(recf2[p]) + arg(recf2[q]) — Beta[p,q]))
Update recf2[p+q—1], cour[p+qg-1], sred_a[p+q—1]
End For
End For
Mirror spectrum: d[K—p+1] «— d[p+1], re[K—p+1] «— —re[p+1]
Compute y_est «— real part of IFFT(d - exp(j-re))

Return y_est

The main filtering algorithm is represented below.
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Algorithm 2. Bispectrum Filtering Procedure

1. Set default values for msk1, msk2, type filter, and f size if not provided
Pad the input signal with fs/4 samples at both ends using edge repetition
Define a list of window start indices (ii) using step size st

If the final window would exceed signal length, extend ii accordingly
Compute overlap index k and determine last_element for averaging

. Initialize output signal container signal result

. For each index i in ii:

Extract a signal window of length s w

I I T R

Compute its bispectrum Bispecd

10.  Separate real and imaginary parts of the bispectrum

11.  Create 2D filter kernel H based on type filter and f size

12.  Apply H to real and imaginary parts using masks mskl and msk2
13.  Combine filtered parts into complex bispectrum bisp_n

14. Reconstruct time-domain segment Sig M from bisp_n via RecBisp
15.  Align Sig_M with original window using circular shifts:

16. For each shift m:

17. Compute correlation between shifted Sig M and original
18. End For
19. Find the best alignment based on maximum correlation

20. Apply the optimal shift to Sig M
21. Merge Sig_M into signal result based on the value of st:

22. If st ==s_w — concatenate directly

23. If st == 1 — retain original edges and average mid-samples

24, If s w/2 <st<s_ w — average overlapping regions with buffer
25. Else — raise error if step size is invalid

26. Update position index k

27. End For

28. Normalize signal_result by (max_si/ max_re)
29. Remove fs/4 padding samples from both ends
30. Return result_filtering as the final filtered signal

To perform bispectral signal transform, you can use the original code at the link:
https://github.com/synergetics/HOSA Octave, function ‘BISPECD.m’. The following
parameters must be set: nfft = signal length in samples; wind = 0; nsamp = signal length
in samples; overlap leave unchanged. Only with this use will the RecBisp algorithm be
able to restore the original signal from the bispectral estimate. Or you can use the

simplified version given below.
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Algorithm 3. Bispectrum Computation

1. If isfft is not provided, compute FFT of input signal y — ffty
. Initialize bispectrum matrix Bisp with zeros
. Set md2 « round(K / 2)

. If ch == 1, initialize Bisp as a full KxK zero matrix

2

3

4

5. Ifisfft exists:
6.  Setibnet « K, jbnet < K, Bisp « zeros(K,K)

7. Else:

8. Setibnet «— md2 + 1, jbnet «— md2 + 1

9. Setmd2 « K /2 (reassigned, possibly for loop bounds)
10. For ib from 1 to ibnet:

11.  Forjb from 1 to ib:

2. If(ib+jb-1)<K:

13. Compute triple product:

14. Bisp(ib,jb) « ffty(ib) - ffty(jb) - conj(ffty(ib+jb—1))
15. Enforce Hermitian symmetry:

16. Bisp(jb,ib) «<— Bisp(ib,jb)

17. End For

18. End For

19. Return Bisp

The difference of this function is that it does not calculate the symmetric sections
of the bispectral estimate.

To estimate the effect of filtering on the parameters of the signal under study, we
can consider SNR which is determined by the following expressions:

SNR=D, /D 2)
D=l 3 i ps| 3)
W=V S @

where Dy 1s the variance of initial variable signal upon absence of additive gaussian
noise; D is the variance of the difference between filtered and initial signal; x; is the
signal before filtering; s is the mean value of initial signal; n is the number of signal
samples.

In order to represent the values (2) in dB, the following expression must be used

SNR,, =10log10(SNR) (5)
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where SNRyg is the SNR in dB; SNR is the value given in (2).

To study the effectiveness of filtering, one can examine the SNR values before
and after filtering. However, this cannot be done using recorded real-life signals,
because the data records do not contain information about these SNR values prior to
the use of noise filtering procedures.

Results

Figure 8 shows the filtering result for an artificial signal generated by the OSET

model with combined noise superimposed on the ECG signal with a SNR value equals
to 20 dB.
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Figure 8 - Results obtained using bispectral filtering. The top curve is the
generated ECG signal before filtering, and the bottom curve is after bispectral

filtering
Authoring

Proposed filter, by calculating the filtering mask which is defined as a binary
matrix of the bispectral estimate is adaptive to the waveform changes. Therefore, it can

be used with any waveform type of initial signal. Figure 9 shows the filtering result for
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combined noise superimposed on the ECG signal with a SNR value equals to 5 dB.
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Figure 9 - Results obtained using bispectral filtering. The top curve is the
generated ECG signal before filtering, and the bottom curve is after bispectral

filtering
Authoring

The results of study of the filtering performance in comparison with common
nonlinear filters are demonstrated below. It has been considered the following filters:
averaging and median filters (AF and MF, respectively) with different window sizes
(1x3, 1x7, 1x11, 1x23), as well as wavelet filters (Daubechies (db4), Symlets (sym4),
Fejér-Korovkin (tk4), Coiflets (coif4)) with decomposition into 5 levels.
Corresponding results are demonstrated in Table 1.

From the results of Table 1, it can be seen that the proposed bispectral filter
provides an average of 1 dBW or 1.25 W better filtering result within the SNR range
from —20 to 0 dBW. However, at a higher SNR value it provides a worse result due to

the contribution of distortions to the initial signal.
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Table 1 - Performance of the filtering provided by different types of filters
SNR before filtering, dBW
Filter -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50
SNR after filtering, dBW
AF1x3 -15 -10 -5 0 48 97 15 20 24 29 33 32 37 36 37
AF 1x7 -11 -6 -1 31 &1 13 18 19 18 20 22 19 23 21 23
AF I1x11 -10 -4 04 44 87 12 17 14 12 14 16 13 16 15 16
AF1x23 -6 -2 1,7 39 55 7,10 10 73 57 66 78 59 83 7,5 79
MF 1x3 -16 -11 -7 -2 3,6 85 14 18 23 28 33 36 41 43 45
MF 1x7 -13 -8 -3 16 6,6 11 16 20 22 26 29 25 30 28 30
MF 1x11 -11 -6 -1 3,1 79 12 17 18 16 18 21 17 22 20 21
MF1x23 9 -3 02 31 54 7,7 12 80 58 68 87 62 93 82 &8
db4 -6 -2 28 6,6 11 13 20 21 23 27 31 27 35 32 34
sym4 -6 -1 27 64 11 15 21 22 23 26 29 26 34 31 32
fk4 -6 -1 30 68 11 14 20 21 22 24 27 28 29 27 28
coif4 -6 -1 27 64 11 14 20 22 23 26 28 29 31 29 30
Bisp -5 o 33 72 12 13 14 15 14 15 15 16 14 15 15
Authoring

Discussion

It should be noted that the developed algorithm can only work with periodic
signals such as ECG, PPG, and others. That is, with signals in which some information
is repeated over time as, for instance, for QRS-complex commonly contained in ECG
signals. If the signal is not periodic, i.e., has significant changes over time, then the
bispectral evaluation of the signal will give averaged information over all spectral
components in the signal. That is why, the mask will be used incorrectly during
filtering. Also, it is worth testing the developed algorithm on real signals to make sure
of its resistance to nonlinear changes that occur in them.

The calculations necessary for obtaining bispectral estimate and reconstructed
signal requires considerable computations. Proposed technique was developed so that
all data processing procedures are performed using a sliding window. The window size
is of 512 samples, and the bispectral estimate matrix itself is of 512x512 = 262144
complex values. Each sample is allocated 64 bits which gives 16 777 216 bits for the
real part and 16 777 216 bits for the imaginary part. One matrix weighs about 2 MB.
Since the memory stores one averaged bispectral estimate for the entire record and one
local bispectrum for the current signal fragment. Hence, about 4-6 MB of RAM is

needed to accumulate bispectral estimates.
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As for real-time processing, proposed technique is not currently implemented yet.
However, since proposed filtering is performed by window mode, this procedure can
be implemented in the future. But it is worth noting that the filtering performance in
this mode will change over time, since more separate bispectral estimates will be added
to the averaged bispectral estimate over time for sufficiently suppression the noise level
in the bispectral estimate. This will allow us to calculate the filter mask more accurately
and obtain certain benefit.

It is necessary to study in more detail the direction and possibility of applying the
developed algorithm to other applications and problems. The study of the influence of
nonlinear changes in ECG signals such as arrhythmia or artifacts associated with
pathologies will be studied additionally by us in the future. Given the obtained results,
proposed filtering algorithm would be best applied to the important problems of
extracting fetal ECG from the noninvasive abdominal signal performed after removing
the interference contribution of maternal ECG. It may be necessary to use adaptive
thresholds, but the algorithm for calculating the adaptive threshold is not yet clear, but
we will also study this issue in the future.

Conclusions

The paper proposes an adaptive technique for nonlinear filtering of the ECG
signals based on bispectral signal processing. In this study, we used a noise mixture
(White Noise (WN); Colored Noise (CN); Real Muscle Artifacts (MA); Real Electrode
Movements (EM) and Real Baseline Wander (BW)) with the same signal-to-noise ratio
to investigate performance of interference immunity provided by proposed technique.
Proposed technique provides an average improvement by 1 dBW +0.73 SD or 1.25 W
+ 0.73 SD of the filtering result in the range of signal-to-noise ratio values from —20 to
0 dBW. However, at a higher SNR value, the proposed technique provides a worse
result due to the contribution of distortions to the initial signal unlike existing common
methods. Proposed bispectrum-based type of filter is recommended to be more
optimally used to remove noise contributions from the ECG signal at a low SNR. The
advantage of the proposed technique is invariance to non-stationary changes in the

shape of the ECG signal during recording, as well as the ability to adapt to each
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individual recording by calculating binary matrices for filtering from the bispectral
estimate the signal being processed. This makes the proposed technique adaptive and
robust to any changes.

Supplementary Materials: Software code for generation of ECG signals and
interferences is available by https://sameni.org/OSET/. Algorithms necessary for
implementation of proposed technique are represented in the paper.
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