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Abstract. Due to the influence of a large number of interference contributions contained in the 

recorded ECG signal, advanced techniques and algorithms are commonly used to extract the useful 
signal in noise background environment. However, existing filtering techniques have a large number 
of problems when using them for ECG signal processing. One of the main requirements is to develop 
such technique that would allow for the gradual measured data to carry out the accumulation and 
averaging procedures to suppress effectively the interferences. In addition, this technique should also 
be invariant to the typical random ECG signal time shifts that sufficiently destroy coherent signal 
accumulation. It should also be able extracting important information about the phase coupling 
arising due to the nonlinear processes in cardiovascular activity. One of such signal processing 
technique having noted features is bispectrum-based data processing technique. A novel technique of 
adaptive nonlinear filtering based on bispectral signal processing is proposed in the present paper. 
Suggested technique provides an average improvement by 1 dBW of the filtering performance in the 
range of signal-to-noise ratio (SNR) variations from –20 to 0 dBW. However, at a higher SNR, the 
proposed technique provides a worse result due to the contribution of distortions to the initial signal. 
Note, that suggested bispectrum-based filter is more effective to be used to remove additive gaussian 
noise components from the ECG signal at a low SNR. The advantage of the proposed technique is 
invariance to non-stationary changes in the waveform of the ECG signal which makes the proposed 
method adaptive and robust to any changes. 
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Introduction. 

Due to the presence of a large number of interference contributions in the ECG 

signal, various advanced techniques and algorithms are used to extract the useful signal 

in noise environment. Such common techniques as independent component analysis 

technique [1], filtering technique [2], their combinations [3] to achieve the best result 

[4], wavelet transform [5], techniques of decomposition of signals into empirical 

modes [6], correlation techniques [7], as well as non-adaptive methods [8] are 

widespread today. In turn, they can be divided into single-channel methods [9] and 

multi-channel methods [10,11]. Standard Kalman filters (KF) were built to process 

stationary processes. However, since medical signals are more related to non-stationary 

processes and they have a nonlinear nature, modifications of KF such as the extended 
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Kalman filter (EKF) are more often used to implement extracting an ECG signal from 

a mixture of a useful signal and noise. Its peculiarity is the following. The result is the 

separation of ECG components while other components and interference components 

of the ECG signal are considered as noise [12]. This approach allows for the evaluation 

of the noise of the original signal value with new signal values. Therefore, this method 

is actively used in long-term monitoring as it allows adapting to each specific case [13] 

for the removal of nonlinear interference.  

There is also another modification of this technique called extended Kalman 

smoothing (EKS). It is based on the EKF using inverse smoothing [14,15]. The ECG 

signal is processed by determining the average value of the ECG component heart rate 

which is then approximated using a Gaussian kernel. The signal is then amplified using 

a gain factor which is used to correlate the observed signals and taking into account the 

dynamics of the system. However, these filters are not adaptive to non-stationary 

changes in the ECG signal in which the shape of the QRS complexes may change 

during signal recording due to the influence of other interference contributions. Some 

QRS complexes may be removed after using this type of filter. However, it will lead 

to further errors in ECG signal processing. 

There are also independent component analysis techniques. Their concept is based 

on the fact that the source is statically independent while the ECG signal is a mixture 

of signals at the output [16]. To estimate each individual component of the ECG signal, 

a separation matrix is used. It allows by multiplication to obtain separate estimates for 

each separate source of the ECG signal. It should be noted that the separation matrix 

cannot be calculated exactly. Therefore, when using blind source separation approach 

the approximate estimates of the original source signals are obtained. These techniques 

belong to the class of second-order estimates which are called Independent Component 

Analysis (ICA) [17-18]. There is also another class of these methods called as periodic 

component analysis or periodic component analysis (πCA) [19-20]. The main problem 

when using ICA methods is that after obtaining estimates of individual sources of the 

ECG signal, it is impossible to reliably determine the order of the sources, as well as 

the scaling of the sources and their sign. However, a large number of modifications 
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have been introduced that based on these algorithms. Wavelet transform techniques are 

also actively used. They are also implemented as methods of nonlinear filtering of ECG 

signals combining them with other nonlinear filtering methods [21], thereby replacing 

Kalman filters or using them in combination [21]. In [22], the effectiveness of using 

simlet wavelets for preprocessing of ECG signals has been demonstrated in order to 

reduce the level of noise in the initial signal. However, this method is not adaptive to 

nonlinear changes in the signal and to implement such adaptability. It is necessary to 

use modified threshold values, adaptive thresholds or hard thresholds which will allow 

when using the proposed approach to remove noise components from the ECG signal 

as much as possible. 

Taking into account these peculiarities and problems, the wavelet transform is 

also not suitable for solving the problem of filtering ECG signals due to the need for 

preliminary calculations. Accordingly, it is necessary to determine an analysis 

technique that would allow for the gradual accumulation and averaging of information 

to suppress the maximum amount of interference arising due to such accumulation. It 

should also be invariant to random signal shifts. It should also have information 

exclusively about the phase coupling properties contained in the nonlinear ECG 

signals. One of such ECG signal analysis technique is bispectrum-based signal 

processing. 

Bispectrum is a complex-valued function of two frequency variables. Bispectrum 

is given by its bimagnitude and biphase functions. The estimate of the bispectral 

density (third-order spectral density or cumulative spectrum) allows us to correctly 

describe the statistical characteristics of the observed process and determine the 

presence of correlations between spectral components. The main difference between 

the bispectrum and the energy spectrum is the preservation of phase information and 

the possibility of its restoration. Expression for the bispectrum estimate can be written 

as discrete function of the following triple product form: 

 ( ) ( ) ( ) ( ) ( ) ( ),  , ,   *x x m m m MB p q B p q exp j p q X p X q X p qϕ  = < += > , (1) 

where Bx(p, q) is a complex-valued function of two discrete frequency variables;  

|Bx (p,q)| is the bimagnitude; φ(p,q) is the biphase; <…> denotes ensemble averaging; 
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p = –I+1,…,I–1 and q= –I+1,…,I–1 are the frequency indices; Xm(…) is the discrete 

Fourier transform computed for m-th realization of the process under study;  

m = 1, 2,…,M is the number of observed realization; symbol * denotes complex 

conjugation; j = (-1)1/2 

Note the useful features of bispectrum. First, bispectrum of gaussian noise tends 

to zero. Second, bispectrum is able to extract phase coupling contributions contained 

in nonlinear process. Third, bispectral signal statistical processing can provide coherent 

accumulation for the number of signal realizations that are randomly shifted during the 

averaging time interval. 

Materials and Methods 

An open-source electrophysiological toolbox (OSET) [23] has been developed for 

the generation and study of ECG signals. This toolbox includes tools such as ECG 

signal generators and noise generators based on real-life signal models. OSET is a 

collection of open-source code for generating, modeling, processing, and filtering 

biological signals released in June 2006. The toolbox is distributed under the Berkeley 

Software Distribution (BSD) license and can be used freely. Figure 1 shows an example 

of a generated ECG signal. 
 

 
Figure 1 - Generated ECG signal 

Authoring 
 

The OSET system allows to create a number types of noises, namely white noise, 

colored noise, simulate noises caused by muscle contractions, electrode movement, and 
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baseline drift. There is also the possibility of generating combined noise which consists 

of the previous ones. For example, it is possible to simulate the simultaneous 

superposition of interference caused by electrode movements, muscle contraction, and 

baseline drift. This combined interference can be used when testing the noise immunity 

of the developed methods or testing adaptive filters to suppress these classes of noise 

that arise when recording real data. Therefore, the system is flexible for studying the 

ECG signal processing techniques. 

Figure 2 shows an example of generating an ECG signal with superimposed white 

noise with a signal-to-noise ratio of 30 dB, as well as a combination of noises caused 

by muscle contraction, electrode movement, and baseline drift, and also with a signal-

to-noise ratio of 30 dB. 
 

 

Figure 2 - Mixture of generated signal and combined noise 
Authoring 

 

Using this ECG signal generation system, it is possible to study the efficiency of 

filtering since the SNR is known, as well as the parameters of the signals themselves 

which will also allow investigating the degree of distortions introduced by filtering into 

the shape of the initial signals. 

Bispectral estimation of the ECG signal is performed at the first stage of data 

processing. To do this, bispectral averaging is performed in the Fs/2 window of the 

signal with the same step, where Fs is the sampling frequency of the ECG signal. In 
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this case, noise components are removed during such accumulation. Figure 3 

demonstrates the averaged bimagnitude estimate (1) for the ECG signal in the form of 

a contour image. Figures 4 and 5 demonstrate real and imaginary parts of bispectrum 

estimate (1), respectively. 

 

 

Figure 3 - Bimagnitude estimate computed for ECG signal 
Authoring 

 
Figure 4 - Real part of bispectrum estimate computed for ECG signal 

Authoring 
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Figure 5 - Imaginary part of bispectrum estimate computed for ECG signal 

Authoring 

 

At the second data processing step, the filter mask is calculated. In order to 

calculate the mask for filtering, the real and imaginary parts of the bispectral estimate 

are used. To obtain a mask from the real or imaginary part, the matrix is converted into 

a gray scale image. Figure 6 demonstrates the example of the matrix conversion. 

  
(a) (b) 

Figure 6 - Example of transform into the gray scale image performed for 

real (a) and imaginary (b) part of bispectral estimate. The images are mirrored 

to their counterparts in Fig. 4 and 5, and for a larger expansion along the axes 
Authoring 
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After computations, correspondent matrices are obtained in the image intensity 

withing the range from 0 to 1. In order to compute the mask for the filter, it is necessary 

to convert the image into binary format so that the final matrix contains intensity values 

of either 0 or 1. Accordingly, filtering will occur in intensity zones contained 1, and no 

filtering will occur in zones contained 0. A threshold of 0.5 is selected to calculate the 

binary image. Figure 7 shows the example of computing binary matrices for the real 

and imaginary parts of bispectrum estimate. 
 

  
(a) (b) 

Figure 7 - Example of transform to the binary images performed for real (a) and 

imaginary (b) part of ECG signal bispectrum estimate. The images are mirrored 

to their counterparts in Fig. 4 and 5, and for a larger expansion along the axes 
Authoring 

 

After computing these matrices, the signal is filtered. At the very beginning 

processing step, Fs/4 zero values are added to the left and right of the signal from the 

signal. This is necessary because the filtering must be performed from the very 

beginning of the signal to the very end. After that, a sliding window is determined 

corresponding to the size of the matrix of the bispectral estimate. It is equal to Fs/2. 

This window moves along the signal with a step of one sample, and the bispectrum 

estimate is calculated for the signal that falls into the window. After that, the 

bispectrum estimate obtained for the local fragment of the signal is divided into real 

and imaginary parts. Obtained real and imaginary local parts are multiplied by binary 
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images as demonstrated in Fig. 7. After that, the obtained matrix is filtered by an 

averaging filter with a window size of 5 x 5 samples. Next, a new matrix of local 

bispectral estimate is formed from the filtered matrices. A signal is converted using the 

inverse transform performed from bispectral to the time space. Next, the obtained 

signal is averaged over the entire range, and one value is stored into the central element 

of the window in a new array that will be responsible for the filtered signal. Next, the 

window is shifted by one element and all processing steps are repeated until the 

processing of the entire signal is completed. At the very end of the data processing, 

zero values that were added at the very beginning are removed. Below a parametric 

method for signal recovery from bispectral transform [24] is represent. 

 

Algorithm 1. Signal reconstruction from bispectrum (RecBisp) 
1. Initialize Alfa[K×K], Beta[K×K] to zeros 

2. Compute md2 ← round(K / 2) 

3. For i = 1 to md2+1 

4.     For q = 1 to i and (q + i – 1 ≤ md2+1) 

5.         Beta[i,q] ← phase of Bisp[i,q] 

6.         Alfa[i,q] ← magnitude of Bisp[i,q] 

7.     End For 

8. End For 

9. Set Alfa[1,1] ← small value if zero 

10. Compute d[1] ← cube root of Alfa[1,1] 

11. Compute d[2] ← sqrt(Alfa[2,1] / d[1]) if d[1] ≠ 0 

12. Initialize recf2[1] ← exp(–j·Beta[1,1]) 

13. If usenoise = 1, set recf2[1:2] ← exp(j·noisephase[1:2]) 

14. For p = 2 to md2+1 

15.     For q = 1 to p while (p+q–1 ≤ md2+1) 

16.         Update d[p], d[p+q–1] based on Alfa and noise 

17.         Compute reincr ← exp(j·(arg(recf2[p]) + arg(recf2[q]) – Beta[p,q])) 

18.         Update recf2[p+q–1], cour[p+q–1], sred_a[p+q–1] 

19.     End For 

20. End For 

21. Mirror spectrum: d[K–p+1] ← d[p+1], re[K–p+1] ← –re[p+1] 

22. Compute y_est ← real part of IFFT(d · exp(j·re)) 

23. Return y_est 

 

The main filtering algorithm is represented below. 
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Algorithm 2. Bispectrum Filtering Procedure 
1.  Set default values for msk1, msk2, type_filter, and f_size if not provided 

2.  Pad the input signal with fs/4 samples at both ends using edge repetition 

3.  Define a list of window start indices (ii) using step size st 

4.  If the final window would exceed signal length, extend ii accordingly 

5.  Compute overlap index k and determine last_element for averaging 

6. Initialize output signal container signal_result 

7.  For each index i in ii: 

8.      Extract a signal window of length s_w 

9.      Compute its bispectrum Bispecd 

10.     Separate real and imaginary parts of the bispectrum 

11.     Create 2D filter kernel H based on type_filter and f_size 

12.     Apply H to real and imaginary parts using masks msk1 and msk2 

13.     Combine filtered parts into complex bispectrum bisp_n 

14.     Reconstruct time-domain segment Sig_M from bisp_n via RecBisp 

15.     Align Sig_M with original window using circular shifts: 

16.         For each shift m: 

17.             Compute correlation between shifted Sig_M and original 

18.         End For 

19.         Find the best alignment based on maximum correlation 

20.         Apply the optimal shift to Sig_M 

21.     Merge Sig_M into signal_result based on the value of st: 

22.         If st == s_w → concatenate directly 

23.         If st == 1 → retain original edges and average mid-samples 

24.         If s_w/2 ≤ st < s_w → average overlapping regions with buffer 

25.         Else → raise error if step size is invalid 

26.     Update position index k 

27. End For 

28. Normalize signal_result by (max_si / max_re) 

29. Remove fs/4 padding samples from both ends 

30. Return result_filtering as the final filtered signal 

 

To perform bispectral signal transform, you can use the original code at the link: 

https://github.com/synergetics/HOSA_Octave, function ‘BISPECD.m’. The following 

parameters must be set: nfft = signal length in samples; wind = 0; nsamp = signal length 

in samples; overlap leave unchanged. Only with this use will the RecBisp algorithm be 

able to restore the original signal from the bispectral estimate. Or you can use the 

simplified version given below.  
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Algorithm 3. Bispectrum Computation 
1.  If isfft is not provided, compute FFT of input signal y → ffty 

2.  Initialize bispectrum matrix Bisp with zeros 

3.  Set md2 ← round(K / 2) 

4.  If ch == 1, initialize Bisp as a full K×K zero matrix 

5.  If isfft exists: 

6.      Set ibnet ← K, jbnet ← K, Bisp ← zeros(K,K) 

7.  Else: 

8.      Set ibnet ← md2 + 1, jbnet ← md2 + 1 

9.  Set md2 ← K / 2  (reassigned, possibly for loop bounds) 

10. For ib from 1 to ibnet: 

11.     For jb from 1 to ib: 

12.         If (ib + jb – 1) ≤ K: 

13.             Compute triple product: 

14.                 Bisp(ib,jb) ← ffty(ib) · ffty(jb) · conj(ffty(ib+jb–1)) 

15.             Enforce Hermitian symmetry: 

16.                 Bisp(jb,ib) ← Bisp(ib,jb) 

17.     End For 

18. End For 

19. Return Bisp 

 

The difference of this function is that it does not calculate the symmetric sections 

of the bispectral estimate. 

To estimate the effect of filtering on the parameters of the signal under study, we 

can consider SNR which is determined by the following expressions: 

 /sSNR D D=  (2) 

 2

1
1  n

s i
D xi sn µ

=
= −∑  (3)  

 
1

1  n
s ii

xnµ
=

= ∑  (4)  

where Ds is the variance of initial variable signal upon absence of additive gaussian 

noise; D is the variance of the difference between filtered and initial signal; xi is the 

signal before filtering; μs is the mean value of initial signal; n is the number of signal 

samples. 

In order to represent the values (2) in dB, the following expression must be used 

 ( )10 10dBSNR log SNR=   (5) 
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where SNRdB is the SNR in dB; SNR is the value given in (2). 

To study the effectiveness of filtering, one can examine the SNR values before 

and after filtering. However, this cannot be done using recorded real-life signals, 

because the data records do not contain information about these SNR values prior to 

the use of noise filtering procedures. 

Results 

Figure 8 shows the filtering result for an artificial signal generated by the OSET 

model with combined noise superimposed on the ECG signal with a SNR value equals 

to 20 dB. 

 

Figure 8 - Results obtained using bispectral filtering. The top curve is the 

generated ECG signal before filtering, and the bottom curve is after bispectral 

filtering 
Authoring 

 

Proposed filter, by calculating the filtering mask which is defined as a binary 

matrix of the bispectral estimate is adaptive to the waveform changes. Therefore, it can 

be used with any waveform type of initial signal. Figure 9 shows the filtering result for 
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combined noise superimposed on the ECG signal with a SNR value equals to 5 dB. 
 

 

Figure 9 - Results obtained using bispectral filtering. The top curve is the 

generated ECG signal before filtering, and the bottom curve is after bispectral 

filtering 
Authoring 

 

The results of study of the filtering performance in comparison with common 

nonlinear filters are demonstrated below. It has been considered the following filters: 

averaging and median filters (AF and MF, respectively) with different window sizes 

(1x3, 1x7, 1x11, 1x23), as well as wavelet filters (Daubechies (db4), Symlets (sym4), 

Fejér-Korovkin (fk4), Coiflets (coif4)) with decomposition into 5 levels. 

Corresponding results are demonstrated in Table 1. 

From the results of Table 1, it can be seen that the proposed bispectral filter 

provides an average of 1 dBW or 1.25 W better filtering result within the SNR range 

from –20 to 0 dBW. However, at a higher SNR value it provides a worse result due to 

the contribution of distortions to the initial signal. 
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Table 1 - Performance of the filtering provided by different types of filters 

Filter 
SNR before filtering, dBW 

-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 
SNR after filtering, dBW 

AF 1х3 -15 -10 -5 0 4,8 9,7 15 20 24 29 33 32 37 36 37 
AF 1х7 -11 -6 -1 3,1 8,1 13 18 19 18 20 22 19 23 21 23 
AF 1х11 -10 -4 0,4 4,4 8,7 12 17 14 12 14 16 13 16 15 16 
AF 1х23 -6 -2 1,7 3,9 5,5 7,1 10 7,3 5,7 6,6 7,8 5,9 8,3 7,5 7,9 
MF 1х3 -16 -11 -7 -2 3,6 8,5 14 18 23 28 33 36 41 43 45 
MF 1х7 -13 -8 -3 1,6 6,6 11 16 20 22 26 29 25 30 28 30 
MF 1х11 -11 -6 -1 3,1 7,9 12 17 18 16 18 21 17 22 20 21 
MF 1х23 -9 -3 0,2 3,1 5,4 7,7 12 8,0 5,8 6,8 8,7 6,2 9,3 8,2 8,8 

db4 -6 -2 2,8 6,6 11 13 20 21 23 27 31 27 35 32 34 
sym4 -6 -1 2,7 6,4 11 15 21 22 23 26 29 26 34 31 32 
fk4  -6 -1 3,0 6,8 11 14 20 21 22 24 27 28 29 27 28 

coif4 -6 -1 2,7 6,4 11 14 20 22 23 26 28 29 31 29 30 
Bisp -5 0 3,3 7,2 12 13 14 15 14 15 15 16 14 15 15 

Authoring 

 

Discussion 

It should be noted that the developed algorithm can only work with periodic 

signals such as ECG, PPG, and others. That is, with signals in which some information 

is repeated over time as, for instance, for QRS-complex commonly contained in ECG 

signals. If the signal is not periodic, i.e., has significant changes over time, then the 

bispectral evaluation of the signal will give averaged information over all spectral 

components in the signal. That is why, the mask will be used incorrectly during 

filtering. Also, it is worth testing the developed algorithm on real signals to make sure 

of its resistance to nonlinear changes that occur in them. 

The calculations necessary for obtaining bispectral estimate and reconstructed 

signal requires considerable computations. Proposed technique was developed so that 

all data processing procedures are performed using a sliding window. The window size 

is of 512 samples, and the bispectral estimate matrix itself is of 512x512 = 262144 

complex values. Each sample is allocated 64 bits which gives 16 777 216 bits for the 

real part and 16 777 216 bits for the imaginary part. One matrix weighs about 2 MB. 

Since the memory stores one averaged bispectral estimate for the entire record and one 

local bispectrum for the current signal fragment. Hence, about 4-6 MB of RAM is 

needed to accumulate bispectral estimates.  



SWorldJournal                                                                                                                        Issue 33 / Part 2 

 ISSN 2663-5712                                                                                                                                                                                    www.sworldjournal.com 206 

As for real-time processing, proposed technique is not currently implemented yet. 

However, since proposed filtering is performed by window mode, this procedure can 

be implemented in the future. But it is worth noting that the filtering performance in 

this mode will change over time, since more separate bispectral estimates will be added 

to the averaged bispectral estimate over time for sufficiently suppression the noise level 

in the bispectral estimate. This will allow us to calculate the filter mask more accurately 

and obtain certain benefit. 

It is necessary to study in more detail the direction and possibility of applying the 

developed algorithm to other applications and problems. The study of the influence of 

nonlinear changes in ECG signals such as arrhythmia or artifacts associated with 

pathologies will be studied additionally by us in the future. Given the obtained results, 

proposed filtering algorithm would be best applied to the important problems of 

extracting fetal ECG from the noninvasive abdominal signal performed after removing 

the interference contribution of maternal ECG. It may be necessary to use adaptive 

thresholds, but the algorithm for calculating the adaptive threshold is not yet clear, but 

we will also study this issue in the future.  

Conclusions 

The paper proposes an adaptive technique for nonlinear filtering of the ECG 

signals based on bispectral signal processing. In this study, we used a noise mixture 

(White Noise (WN); Colored Noise (CN); Real Muscle Artifacts (MA); Real Electrode 

Movements (EM) and Real Baseline Wander (BW)) with the same signal-to-noise ratio 

to investigate performance of interference immunity provided by proposed technique. 

Proposed technique provides an average improvement by 1 dBW ± 0.73 SD or 1.25 W 

± 0.73 SD of the filtering result in the range of signal-to-noise ratio values from –20 to 

0 dBW. However, at a higher SNR value, the proposed technique provides a worse 

result due to the contribution of distortions to the initial signal unlike existing common 

methods. Proposed bispectrum-based type of filter is recommended to be more 

optimally used to remove noise contributions from the ECG signal at a low SNR. The 

advantage of the proposed technique is invariance to non-stationary changes in the 

shape of the ECG signal during recording, as well as the ability to adapt to each 
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individual recording by calculating binary matrices for filtering from the bispectral 

estimate the signal being processed. This makes the proposed technique adaptive and 

robust to any changes. 

Supplementary Materials: Software code for generation of ECG signals and 

interferences is available by https://sameni.org/OSET/. Algorithms necessary for 

implementation of proposed technique are represented in the paper. 
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