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Abstract. Mathematical modeling of epidemic dynamics plays a crucial role in understanding, 

predicting, and controlling the spread of infectious diseases. Traditional approaches are often based 
on diffusion-type equations, which assume instantaneous propagation of changes in infection density. 
However, such models may oversimplify real transmission processes, as the spread of infection 
among the population usually occurs at a finite rate and exhibits wave-like behavior. To overcome 
these limitations, this article presents a method for predicting epidemiological threats based on the 
telegraph equation. 

The telegraph equation, being a second-order hyperbolic differential equation, allows the 
terminal velocity of propagation and inertial effects to be included in the model. This makes it possible 
to reflect both diffusion and wave-like modes of epidemic propagation, depending on the balance 
between diffusion and transport mechanisms. The proposed model describes the spatial-temporal 
distribution of infection cases and provides insight into the dynamics of epidemic fronts. 

Analytical methods make it possible to obtain solutions and analyze them under complex initial 
and boundary conditions. The results confirm that the approach based on the telegraph equation 
provides a more realistic description of the spread of the epidemic wave compared to classical 
diffusion models. Moreover, this method allows identifying critical thresholds, predicting infection 
peaks, and estimating the time required for the epidemic to spread in specific regions. 

The proposed approach can be applied both in theoretical research and as a practical 
forecasting tool for healthcare systems. It provides a flexible and physically consistent mathematical 
framework for predicting the spread of epidemiological threats, assisting in decision-making 
regarding epidemic preparedness and response strategies. 

Keywords: telegraph equation, epidemic spread, epidemiological threats, mathematical 
modeling, wave propagation, forecasting, partial differential equations. 

 

Problem Statement.  

The problem of predicting the spread of epidemiological threats is one of the key 

issues in modern mathematical biology and medical statistics. Classical diffusion 

models based on the heat conduction equation describe the spread of infection as an 

instantaneous propagation of changes in space. However, real epidemic processes are 

characterized by finite transmission rates and wave propagation. As a result, classical 

models do not take into account inertial effects and can distort the results of forecasting. 

The telegraph equation, which is a second-order hyperbolic differential equation, 

allows the mechanisms of diffusion and wave propagation to be combined. In the 

context of epidemiology, it provides a more realistic description of the process, as it 
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takes into account both local fluctuations in infection density and the wave propagation 

of the epidemic front. 

Thus, the task is to develop a method for predicting the spread of epidemiological 

threats based on the telegraph equation, which allows: 

1) adequately describe the dynamics of infections in space and time; 

2) identify critical modes of epidemic development; 

3) determine the speed of spread of infectious waves; 

4) predict the timing of reaching certain regions and peak incidence values. 

Solving this problem will contribute to the construction of more effective 

mathematical models for healthcare needs and rapid response to epidemiological 

threats. 

Analysis of recent studies and publications. Every healthcare project, whether 

it involves introducing new medical technology, modernizing a hospital, implementing 

an electronic health system, or launching a disease prevention program, requires 

careful planning, coordination, and monitoring. This includes clearly defining goals, 

managing resources, monitoring deadlines, assessing risks, and monitoring results. The 

success of healthcare projects is often determined by the team's ability to achieve a 

balance between service quality, financial constraints, and regulatory compliance. 

Modeling the spread of an epidemic is an important tool in managing healthcare 

projects, especially when projects are aimed at overcoming or mitigating the effects of 

infectious disease outbreaks. This not only allows for the prediction of the development 

of an epidemic, but also provides project managers with scientifically sound data for 

making critical decisions. 

Infection spread models allow us to assess possible scenarios for the development 

of an epidemic under various conditions: the rate of infection spread, the number of 

cases, the peak of the epidemic, and possible ways to contain it. This enables project 

managers to plan resources, infrastructure, logistics of medical supplies, and hospital 

beds based on actual needs.  Modeling can be used to analyze where and when 

resources such as medicines, vaccines, or medical personnel will be needed. This helps 

to allocate financial and material resources efficiently to avoid shortages or surpluses 
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in certain regions or healthcare facilities.  

Modeling allows for the analysis of various measures, such as quarantine 

restrictions, vaccination, or social distancing. This helps to assess the effectiveness of 

these measures in different scenarios and select the optimal strategy to reduce the rate 

of infection spread.  

Epidemics create a high level of uncertainty and risk for healthcare projects. 

Modeling allows you to identify key risks (such as excessive strain on medical facilities 

or lack of resources) and create plans for different scenarios, improving the flexibility 

and resilience of the project to external threats. Data obtained from modeling provides 

the basis for evidence-based decisions at all levels of management. This is particularly 

important for strategic decisions such as scaling countermeasures, prioritizing medical 

supplies, or preparing health systems for future waves of the epidemic. 

Managing medical projects during epidemics requires flexible and informed 

decisions that balance effectiveness with cost minimization. Modeling becomes a key 

tool for ensuring predictable and controlled management in such a complex situation. 

 One of the fundamental approaches in epidemiology and mathematical biology 

for analyzing the dynamics of infectious diseases in a population is the construction of 

models based on differential equations [1]. Incorporating parameters such as the 

transmission rate, recovery time, and interactions between population groups makes it 

possible not only to predict future outbreaks but also to evaluate the effectiveness of 

preventive measures, including quarantine, vaccination, and social distancing. 

Classical epidemic models, such as the SIR (Susceptible–Infected–Recovered) 

framework, remain among the most fundamental tools in mathematical epidemiology. 

The SIR model employs systems of ordinary differential equations to capture the 

temporal evolution of three essential population groups: individuals susceptible to 

infection, individuals currently infected, and those who have recovered and acquired 

immunity. Its formulation relies on calculating the proportion of the population within 

each of these categories and on defining the rates of transition between them. In 

particular, the model requires the estimation of two key epidemiological parameters: 

the infection transmission rate, which reflects the probability of disease spread during 
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contact between susceptible and infected individuals, and the recovery rate, which 

characterizes the average duration of infection before recovery. Despite its relative 

simplicity, the SIR model provides valuable insights into the mechanisms of epidemic 

spread and serves as the basis for numerous extensions and generalizations in modern 

epidemiological modeling.in following form 

Let us consider SIR model  

, , ,dS dI dRSI SI I I
dt dt dt

β β γ γ= − = − − =  

where S(t) denotes the number of individuals susceptible to infection, I(t) represents 

the number of infected individuals, and R(t) corresponds to the number of recovered 

individuals [2, 3]. Mathematical modeling of the development of an epidemic process, 

taking into account the specific features of COVID-19 transmission, has been presented 

in [4] using a system of differential equations. 

Mathematical models of disease transmission provide a powerful framework for 

analyzing both the temporal evolution of the number of infected individuals and their 

spatial distribution within a population. While classical models, such as the SIR 

(Susceptible–Infected–Recovered) framework, describe the dynamics of infection in 

terms of time-dependent changes in the size of three key compartments, they often 

neglect the impact of spatial heterogeneity. To address this limitation, extended models 

have been developed that incorporate diffusion or transport terms, thereby allowing for 

the representation of spatial mobility and local clustering of individuals. Such spatially 

explicit models are particularly relevant in the study of modern epidemics, as they 

capture processes such as regional transmission, population density effects, and 

spatially dependent interventions (e.g., localized quarantines or vaccination 

campaigns). These extensions significantly enhance the predictive and explanatory 

power of mathematical epidemiology, making it possible to model not only the overall 

course of an epidemic but also its spatial patterns and spread across different regions 

[5]. 

To model the process of epidemic spread more realistically, diffusion terms are 

incorporated into the classical SIR equations [6]. These terms account for the spatial 
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mobility of both susceptible and infected individuals, thereby extending the traditional 

time-dependent formulation of the model. The inclusion of diffusion reflects the natural 

movement of people across different locations, which directly influences local 

infection dynamics and the geographical progression of an epidemic. By doing so, the 

model not only tracks the evolution of population groups over time but also captures 

spatial interactions, such as clustering of cases or wave-like propagation of disease. 

This spatially extended approach thus provides a more comprehensive representation 

of epidemic processes and offers valuable insights for designing region-specific control 

measures. 

2( , , ) ( , , ) ( , , ) ( , , ),s
S t x y S t x y I t x y D t x yS

t
β∂ β ∇
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= − +
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∂ γ ∇
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where β   is the transmission rate, γ  is the recovery rate, , ,s i rD D D  are the diffusion 

coefficients for the susceptible and infected compartments, 2∇ denotes the Laplace 

operator.  

Reference [6] presents an epidemic model formulated in terms of a second-order 

differential equation with respect to time (spatial diffusion). 

( ) ( ) ( ) ( )( ) ( )
2

0
2 1 02 1 0,

d X t dX t
a a X t a X t vX t

dtdt
ϕ

 
+ + + − = 
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where ( )X t  denotes the number of infected individuals at time t, ϕ  represents the rate 

of growth of the infected population, and { }0 1 2, ,а а а  are coefficients that serve as 

epidemic parameters ( 0а  is the proportion of individuals susceptible to infection; 1а  

is the asymmetry coefficient of the flow; 2а  is the level of population susceptibility to 

the virus). 

Contemporary challenges in epidemiology, including globalization, spatial 

interactions, and complex socioeconomic factors, require more sophisticated 



SWorldJournal                                                                                                                        Issue 33 / Part 2 

 ISSN 2663-5712                                                                                                                                                                                    www.sworldjournal.com 216 

approaches that take into account both the spatial and temporal aspects of disease 

spread. In this regard, epidemic modeling using partial differential equations is used to 

describe the spatial and temporal processes of infection spread [7]. Such models, which 

include elements of diffusion or wave propagation, provide a more accurate reflection 

of the real dynamics of diseases, especially in conditions of heterogeneous population 

distribution and human mobility.  

For models based on wave or diffusion equations with specified conditions at two 

points in time, using the differential-symbol method [8, 9], it is possible to write down 

an analytical solution that makes it possible to predict the spread of the process at any 

point in time at any point in the region.  

Purpose of the work: the purpose of this study is to develop a mathematical 

model of the spread of epidemiological threats based on the telegraph equation, which 

takes into account both the temporal dynamics of the disease and the spatial 

characteristics of its spread, and to develop a method for finding analytical solutions to 

the problem, which makes it possible to study the influence of key model parameters 

on the course of the epidemic. the aim of this study is to develop a mathematical model 

of the spread of epidemiological threats based on the telegraph equation, which 

accounts for both the temporal dynamics of the disease and the spatial characteristics 

of its propagation, as well as to investigate the impact of key model parameters on the 

course of the epidemic. 

Presentation  of  main  material.  

This article discusses approaches to modeling the spread of epidemics using 

second-order differential equations, in particular, wave equations and diffusion 

equations. 

If we model the spread of an epidemic using second-order differential equations 

over time, it may resemble a wave equation or a diffusion equation that takes into 

account inertial effects. The second order in time indicates the effect of acceleration or 

inertia in the dynamics of the epidemic spread. This approach can be useful for 

modeling situations where there are delays in the system's response to changes, for 

example, due to the incubation period or other time delays. 
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The equation describing the state of the infected population looks like a modified 

wave equation that takes into account both spatial and temporal effects 
2

2 2
2

( ) ( )( ) ( ),, , , ,, , , ,I t x y I t x yc I t x y I t x y
tt

α γ∂ ∂
= ∇ − −

∂∂
    (1) 

where 
2

2
( ), ,I t x y

t
∂

∂
 denotes acceleration of the change in infected individuals over time, 

2 2 ), ,(c I t x y∇  is spatial distribution of infected individuals (c is rate of spread of 

infection in space), , ),(I t x y
t

α ∂
∂

 is a term that takes into account attenuation or damping 

(interpreted as a resistance coefficient, for example, due to isolation), ),( ,I t x yγ  is the 

process of recovery or exit from infection (roughly analogous to the classic SIR model). 

These models provide a deeper understanding of the mechanisms of transmission 

between different regions and population groups, as well as an assessment of the impact 

of external factors on the dynamics of the epidemic. 

When forecasting the spread of epidemiological threats, the telegraph equation is 

proposed to be used to model the wave-like spread of epidemics. Unlike diffusion 

models (which are based on heat conduction equations and describe the gradual spread 

of infections), the telegraph equation has its own characteristics and allows for a 

number of components of the project environment to be taken into account (Fig. 1). 

In particular, the spatial-temporal delay in the spread of infection. Infection does 

not spread instantly. That is, it takes time for the wave of spread to reach new territories 

or regions. The model also takes into account the presence of a wave of spread. During 

an epidemic, waves of infection can be observed, when after the first outbreak of the 

disease there is a wave of decrease in the number of patients, followed by a new 

outbreak. This is due to repeated contacts or other factors of the project environment. 

The telegraph equation describes such oscillatory processes well. In addition, the 

proposed method takes into account the speed of infection spread.  

The telegraph equation assumes that the infection spreads in waves at a rate of с

. These waves are dampened by attenuation α , which describes the natural processes 

of epidemic decay or implemented measures (e.g., quarantine). At the beginning of an 
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epidemic, the function  ( ), ,I t x y  describes a sharp outbreak when the number of 

infected people increases rapidly in the center of the epidemic and gradually spreads 

to other regions. 
 

 
Figure 1. Taking into account the characteristics of the project environment 

when forecasting the spread of epidemiological threats based on the telegraph 

equation 

 

For example, if the epidemic started at point 0x , the wave of infection will spread 

from this point at a rate of c . After a certain time, infected people will appear at points 

( ) ( ) ( )1 1 2 2, , , ,... , ...n nx y x y x y . The change in the intensity of infection of the population 

with infectious diseases in different regions depends on the attenuation coefficient α . 

When forecasting epidemiological threats, the initial number of infected people at 

a given point 0x , time 0t = , level of population mobility, and the impact of quarantine 

are specified. Quarantine or vaccination affect the parameter α , increasing or 

decreasing the rate at which the epidemic subsides. This makes it possible to model the 

spread of infection in different regions with given initial conditions, as well as to assess 

how the infection spreads within a hospital district. Let ( )0, ,I x y  and ( ), ,I l x y  are 
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functions that describe the epidemic process at two points in time, according to the 

differential-symbol method [10, 12], it is possible to find the solution to this problem, 

i.e., a function that analytically describes the process of the spread of the epidemic at 

any point and at any point in time. In the case when the absence of sources of new 

infections or external influences leading to the appearance of additional infected 

individuals in the region, equation (1) is homogeneous. 

Let us find analytical solution of the equation (1), which satisfies two-point 

condition 

( ) ( ) ( ) ( )0, , , , , , ,I x y x y I l x y x yϕ φ= = .   (2) 

According to the differential-symbol method, the solution of the two-point 

problem (1), (4) can be found in the following form 
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  in the functions ,ϕ φ . 

Note that if the functions ,ϕ φ  are constants ( ( ) ( )1 2, , , ,x y c x y cϕ φ= = ), i.e., 

only the number of infected individuals at two points in time is considered, then the 

solution to the problem ( ), ,I t x y  depends only on t , i.e., we obtain the dependence of 

the change in the number of infected individuals over time 

( )
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Knowing the number of infected individuals at different spatial points of the 

region at two distinct time moments, the differential-symbol method can be applied to 
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construct solutions of the telegraph equation that describe the spatiotemporal dynamics 

of the epidemic spread. This approach allows not only the prediction of overall trends 

in the infection process but also the identification of characteristic features, such as 

peak incidence periods and subsequent phases of decline. 

The telegraph equation allows for an accurate description of the wave-like 

dynamics of infection spread in a given region, taking into account time delays, the 

speed of infection spread, and the sources of new outbreaks. Based on the proposed 

method, forecasts are made for peaks in population morbidity, the spread of infection 

to new territories, and assessments of the overall burden on medical facilities during 

an epidemic.  

Let us consider correlation of the telegraph equation with the classic SIR model. 

This makes it possible to expand the spatio-temporal approach to modeling the spread 

of epidemiological threats. Combining these two approaches allows us to 

simultaneously take into account both the dynamics of infectious disease transmission 

among the population of a given region and the spatial distribution of the infection.  

The classical SIR (Susceptible-Infectious-Recovered) model describes the 

dynamics of infectious disease in a population by dividing the population into three 

groups: 

– S (susceptible) – the population of the region that can be infected; 

– I (infected) – the population of the region that is infected and can transmit the 

infection to others; 

– R (recovered) – the population of the region that has recovered or become 

immune, i.e., can no longer transmit the disease. 

The model is described by a system of differential equations: 

, , ,dS SI dI SI dRI I
dt N dt N dt

β β γ γ= − = − =    (3) 

where ( )S t  is number of vulnerable individuals over time; ( )І t is number of infected 

individuals over time; ( )R t  is number of recovered individuals; β  denotes rate of 

infection among the region's population; γ is rate of recovery among the region's 

population; N is total population living in the region. 
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The model (3) is the basis for calculating the dynamics of infectious diseases. 

However, it does not take into account spatial features such as changes in different 

regions, human migration, or delays in the spread of infection. Combining it with the 

telegraph equation makes it possible to eliminate these shortcomings. 

The SIR model describes the general dynamics of infection within a population 

well, but does not take into account the spatial aspect of the spread of infection. To 

simulate not only the temporal but also the spatial-temporal dynamics of infection, the 

telegraph equation (1) is introduced. This equation allows us to model the spread of 

infection in the form of waves that propagate at a certain speed c  in space x  and time 

t . 

Let us consider the relationships between the models. The telegraph equation (1) 

for spatial propagation is refined as follows. The SIR model is extended by introducing 

a dependence on spatial coordinates. For this purpose, the telegraph equation is used, 

which describes the processes of how the infection spreads from one region to another 

at a rate (the rate of infection spread). 

Thus, for each of the parameters ( ),S x t , ( ),I x t  and ( ),R x t , it is proposed to use 

the telegraph equation (1) to describe the spatio-temporal dynamics. 

The classical SIR framework presumes that the infection is transmitted 

instantaneously across the entire population. In contrast, real-world epidemic dynamics 

exhibit a gradual expansion, whereby the infection front advances progressively into 

new geographic regions. The telegraph equation (1) provides a more realistic 

description of this process by incorporating a finite propagation velocity ccc. 

Furthermore, empirical observations indicate that the spread of infection is 

characterized by a temporal delay τ\tauτ, during which the epidemic wave propagates 

outward from the initial epicenter to surrounding areas. This inherent delay is 

rigorously accounted for in the telegraph equation (1) through the inclusion of the 

second-order time derivative. 

The proposed method incorporates population mobility between regions, thereby 

enabling the modeling of infection spread into new territories. This feature is of 

particular importance for assessing epidemiological threats across large hospital 
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districts. Spatial differentiation enhances the accuracy of predictions, since infections 

propagate unevenly across regions, directly influencing the distribution of resources 

among hospitals and healthcare facilities. Based on this approach, it becomes possible 

to anticipate hospital loads in different areas and ensure their more balanced allocation. 

The telegraph equation (1) provides a framework for predicting epidemic waves 

and periods of decline, which is critical for identifying the timing of new outbreaks and 

implementing timely response measures. Moreover, by introducing a source function, 

the model captures the emergence of new outbreaks in distinct regions or the effects of 

interventions (e.g., vaccination campaigns or quarantine measures), thus offering a 

more reliable basis for planning preventive strategies. 

The integration of the classical SIR model with the telegraph equation enables the 

modeling of not only the temporal dynamics of infection within a population, but also 

its spatial propagation. Such an approach allows for the development of a more 

accurate and effective decision-support system for forecasting epidemiological threats 

and optimizing the allocation of healthcare resources across hospital districts. 

An important feature of the proposed framework is the incorporation of potential 

intervention scenarios, such as quarantine measures and vaccination campaigns. 

Within our method, these scenarios are explicitly embedded in the modeling of 

epidemic dynamics, thereby allowing the simulation of the impact of public health 

interventions on the spread of infection. This provides valuable insights for designing 

preventive strategies and improving the preparedness of healthcare systems in the face 

of future outbreaks. 

Vaccination introduces an additional term that modifies the number of susceptible 

individuals S(t) available for infection, with the rate of vaccination ν directly 

influencing the dynamics. This leads to modifications of the equations (3): 

, ,dS SI dI SI dRvS I I vS
dt N dt N dt

β β γ γ= − − = − = +     (4) 

where ν denotes the vaccination rate, which directly decreases the number of 

susceptible individuals S(t) and correspondingly increases the number of recovered 

individuals R(t). 
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Based on the spatio-temporal modeling framework, the impact of the spread of 

infectious diseases on the healthcare resources of hospital districts can be evaluated. 

To account for the hospital load, we introduce a variable H(t), representing the 

occupancy of hospitals over time. The maximum hospital load within a given period 

can be expressed through the integral of the number of infected individuals within a 

specific territory: 

( )( ) ,H t I x t dS
Ω

= ∫∫  

where Ω denotes the boundary of the hospital district. 

The hospital load depends on the number of infected individuals within a given 

region. If the number of infected individuals I(t) at time t exceeds the hospital capacity 

maxH , this leads to a critical overload of healthcare facilities. 

The proposed method for predicting the spread of epidemiological threats, which 

incorporates spatio-temporal dynamics, makes it possible to forecast the following 

indicators (Fig. 2): 

1. the peak period of morbidity, corresponding to the maximum number of 

infected individuals maxI , which is determined as the maximum of ( ),I x t  over all 

values of t; 

2. the duration of the epidemic, defined as the time interval after which the 

number of infected individuals becomes less than one; 

3. the hospital load, determined from the predicted hospital occupancy ( )H t  and 

its correspondence to the maximum available bed capacity maxH . 

4. The proposed epidemiological model, which combines the classical SIR 

framework with spatial dynamics, leads naturally to the telegraph equation as a 

governing relation for the spatio-temporal spread of infection. Unlike the diffusion 

equation, the telegraph equation accounts for both finite propagation speed and time 

delay in the transmission of the infection, reflecting more realistic epidemic dynamics. 

Its solutions, expressed through damped traveling waves, describe the spread of 

infection from an epicenter to new regions, the attenuation of epidemic waves, and the 

emergence of new outbreaks under the influence of source terms. These solutions, 
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adapted to the initial and boundary conditions of the model, form the mathematical 

basis for forecasting epidemic waves and evaluating hospital load in different regions. 

 
Fig. 2.  Diagram of indicators that can be quantitatively assessed based on the 

proposed method for forecasting the spread of epidemiological threats 

 

The proposed method for predicting the spread of epidemiological threats based 

on the telegraph equation makes it possible to account for both the temporal and spatial 

dynamics of infection transmission. This is of particular importance for assessing 

hospital load and supporting appropriate management decisions by healthcare project 

managers. 

Conclusion.  

In this study, a method for predicting the spread of epidemiological threats based 

on the telegraph equation has been proposed. The approach integrates classical SIR-

type epidemiological models with spatial-temporal dynamics, allowing for a more 

accurate assessment of infection propagation across regions. By incorporating 

diffusion and delay effects, the method captures both the temporal evolution and spatial 

distribution of infected and susceptible populations. This enables the prediction of key 

indicators such as peak incidence periods, epidemic duration, and hospital load. The 

differential-symbol method provides a systematic way to construct solutions to the 
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telegraph equation using data from two distinct time points, facilitating the 

identification of epidemic peaks, attenuation phases, and potential new outbreaks. 

Overall, the proposed framework supports effective decision-making for resource 

allocation and preventive measures in hospital districts, improving preparedness and 

response to epidemiological threats. 
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