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Abstract. Frost heave in road embankments is a critical issue in cold-region geotechnical 
engineering, leading to surface distresses, differential settlements, and maintenance challenges. As 
climate patterns evolve, accurate frost heave prediction becomes increasingly essential for designing 
resilient pavements. This study presents an advanced Support Vector Machine (SVM) framework to 
predict frost heave based on comprehensive soil parameters (grain size distribution, Atterberg limits, 
moisture content, organic matter) and meteorological variables (air temperature, precipitation, 
freezing index). A multi-year dataset was compiled from laboratory tests and field instrumentation at 
selected cold-region sites, capturing variations in soil types and climatic conditions. The SVM model, 
utilizing a Radial Basis Function kernel, was optimized through grid search and ten-fold cross-
validation to balance complexity and generalization. Performance metrics, including the coefficient 
of determination (R2), mean absolute error (MAE), and mean squared error (MSE), demonstrated a 
significant improvement over conventional multiple linear regression (MLR) models. The findings 
underscore the advantages of leveraging machine learning to capture the non-linear interplay of soil 
and environmental factors, ultimately guiding the design of more durable road embankments in 
regions prone to frost heave. 
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Introduction. 

Frost heave is a geotechnical process where soils expand upon freezing due to the 

formation of ice lenses. It is particularly problematic for pavements in cold-climate 

regions, as it can induce longitudinal and transverse cracks, faulting at joints, and 

significant roughness on road pavements [1]. The critical factors controlling frost heave 

include soil grain size distribution, mineralogy, water availability, and thermal 

gradients [2]. 

With shifting climate patterns, freeze-thaw cycles in many regions are becoming 

more frequent or irregular, posing further challenges to pavement engineers [3]. 

Traditional empirical or semi-empirical methods, while offering initial estimates, often 
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lack the flexibility to adapt to site-specific complexities or variable climatic conditions 

[4-6]. Moreover, designing embankments resistant to frost heave often demands a 

holistic integration of soil properties, in-situ measurements, and weather predictions. 

Recent advancements in computational modeling have paved the way for machine 

learning approaches to tackle geotechnical problems [7]. Among these, Support Vector 

Machines (SVMs) have gained attention for their ability to handle non-linear 

relationships and avoid overfitting through robust regularization [8]. The objective of 

this research is to develop a framework for using SVM-based modeling to predict frost 

heave in road embankments. Specifically, we explore how advanced SVM 

configurations can integrate detailed soil characterization and meteorological 

parameters to yield accurate, site-specific frost heave predictions. 

The remainder of this paper is organized as follows. Section 1 provides an 

expanded overview of the fundamental mechanisms of frost heave and relevant 

predictive methods. Section 2 details data acquisition, preprocessing steps, and the 

theoretical foundations of SVM regression. Section 3 presents and discusses the results 

of hyperparameter tuning, model performance, and sensitivity analyses. Section 4 

offers a deeper interpretation of the findings and contextualizes them within existing 

literature. Finally, Section 5 concludes the study, offering implications for future 

research and practical engineering applications. 

Main text.  

1.Background on Frost Heave and Predictive Approaches 

Frost Heave Mechanisms. Frost heave occurs when subfreezing temperatures 

induce ice crystal growth within the pore structure of soils. Water is drawn from 

unfrozen zones through capillary and cryogenic suction forces, leading to the 

progressive development of ice lenses. Fine-grained soils, especially silts with high 

capillarity, are particularly susceptible [1-6]. The amount of heave depends on: (1) soil 

texture and structure, (2) the rate of freezing, (3) thermal gradient depth, and (4) soil-

water interaction, including water table level [2]. 

Traditional and Emerging Predictive Methods: 

1) Empirical and Semi-Empirical Methods. Early methods relied on index 
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parameters such as frost-susceptibility classifications based on grain size distribution 

and plasticity indices. Empirical correlations often link measured frost heave to a 

freezing index or seasonal freezing depth. While straightforward, these methods may 

be unreliable when site conditions or climate variables deviate from the original 

calibration datasets [9, 10]. 

2) Mechanistic Modeling. More rigorous approaches incorporate heat and mass 

transfer models to simulate ice lens formation [2]. These models capture thermal 

gradients and water migration but require extensive soil-specific parameters (e.g., 

thermal conductivity, hydraulic conductivity, unfrozen water content) and detailed 

climatic data. Calibration can be complex, and errors in parameter estimation propagate 

through the model. 

3) Machine Learning. Machine learning methods, including Artificial Neural 

Networks, Random Forests, and SVMs, bypass many limitations of purely physics-

based or empirical models by learning patterns directly from data. SVMs, in particular, 

excel in handling non-linear relationships through kernel functions and have 

demonstrated robustness in various geotechnical applications such as slope stability 

and soil classification [7]. However, successful implementation requires careful data 

preprocessing, parameter tuning, and validation to ensure that the model generalizes 

well beyond the training dataset. 

2.Methodology 

Data Collection and Preprocessing. A multi-year, multi-site dataset was collated 

from ongoing geotechnical monitoring projects in cold regions. Comprehensive 

laboratory and field investigations were performed on representative soil samples used 

in road embankment construction. Table 1 summarizes the geotechnical parameters for 

each soil sample. 

Meteorological data were gathered from local weather stations, recording average 

monthly temperature, total precipitation, and a calculated freezing index (accumulated 

degree-days below 0◦C).  

Frost heave displacements were continuously recorded via extensometers and 

settlement plates installed at varying depths in the embankment sections. The measured 



SWorldJournal                                                                                                                        Issue 33 / Part 2 

 ISSN 2663-5712                                                                                                                                                                                    www.sworldjournal.com 57 

heave data were averaged to single values (in mm) per winter season for each tested 

location. Where sensor readings appeared inconsistent (e.g., calibration errors), they 

were filtered through cross-checks with nearby gauges or omitted if irreparable. 

 

Table 1 - Representative Soil Composition Data 

Sample  
ID 

Grain Size Distribution (%) OM Content 
(%) Sand Silt Clay 

S1 34.2 54.8 11.0 2.58 
S2 41.6 41.1 17.3 3.12 
S3 22.7 58.3 19.0 3.94 
S4 48.5 29.4 22.1 2.09 
S5 26.3 59.8 13.9 4.87 
S6 14.8 66.7 18.5 5.96 
S7 38.9 44.1 17.0 3.41 
S8 53.2 31.6 15.2 2.16 
S9 19.4 64.3 16.3 3.84 

S10 31.5 57.2 11.3 3.62 
 

A total of 10 soil types × 5 winter seasons × 4 replicate measurements were 

compiled. Each entry combined soil parameters, meteorological factors, and the 

measured frost heave. Numerical variables were standardized to zero mean and unit 

variance to facilitate model training [7]. The dataset was then randomly split into 

training (80%) and testing (20%) subsets, ensuring each soil category and winter 

season was represented proportionally. 

Support Vector Machine (SVM) Formulation. Support Vector Regression (SVR) 

with the Radial Basis Function (RBF) kernel was used to model frost heave (y) as a 

function of input features x ∈ Rd (soil and meteorological parameters). In the primal 

form, the objective is to minimize: 

                 𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤,𝑏𝑏,𝜉𝜉𝑖𝑖,𝜉𝜉𝑖𝑖

∗     1
2

 ‖𝑤𝑤‖2 + 𝐶𝐶 ∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖∗)𝑁𝑁
𝑖𝑖=1                                     (1) 

                𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡   �
𝑦𝑦𝑖𝑖 − 𝑤𝑤 ∙ 𝜙𝜙(𝑥𝑥𝑖𝑖) − 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖
𝑤𝑤 ∙ 𝜙𝜙(𝑥𝑥𝑖𝑖) + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖∗

𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖∗ ≥ 0
                             (2) 

where C is the penalty parameter, ε is the epsilon-tube defining the margin of 

tolerance, and 𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖∗  represent positive and negative errors, respectively. The non-
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linear mapping ϕ(x) is implicitly handled through the RBF kernel: 

                                K(x, x′) = exp(−γ∥x − x′∥2),                                   (3) 

where γ is the kernel parameter controlling the width of the Gaussian function. 

Optimal hyperparameters (C, γ, ε) were selected via a grid search with ten-fold 

cross-validation, maximizing the R2 on the validation folds [11]. This process 

systematically varied each parameter over a predefined range to identify the best 

combination. 

Model Evaluation Metrics. To robustly assess predictive accuracy, three 

standard metrics were employed: 

Coefficient of Determination (R2): 

                                          𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2𝑖𝑖
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑖𝑖

                                     (4) 

where yi is the observed frost heave, 𝑦𝑦�𝑖𝑖 is the predicted frost heave, and 𝑦𝑦� is the 

mean of observed frost heave. 

Mean Absolute Error (MAE): 

                                        𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑛𝑛
𝑖𝑖=1                                     (5) 

providing an intuitive measure of average absolute deviation from observed values. 

                                     𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2|𝑛𝑛
𝑖𝑖=1                                     (6) 

emphasizing larger errors due to the square term. 

These metrics collectively capture both the variance explained by the model 

and the magnitude of predictive error [7]. 

3. Results 

Hyperparameter Tuning. The grid search explored C ∈ {1, 10, 100, 1000}, γ 

∈ {0.001, 0.01, 0.1, 1}, and ε ∈ {0.001, 0.01, 0.1}. The final choice was C = 100, γ 

= 0.01, and ε = 0.01 based on a balance of high R2 and low MAE across cross-

validation folds. Table 2 highlights a portion of the hyperparameter search results. 

Although C = 1000 offered a marginally higher R2, it showed signs of 

overfitting (larger variance in fold-to-fold error). Thus, C = 100 was chosen to 

maintain generalizability. 
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Table 2 - Selected Hyperparameter Tuning Results (Cross-Validation) 

Combination C γ ε CV  
R2 

CV MAE 
(mm) 

1 10 0.1 0.01 0.85 1.96 
2 100 0.01 0.01 0.90 1.57 
3 100 0.01 0.1 0.88 1.72 
4 1000 0.01 0.01 0.91 1.51 

 

Model Performance on Test Set. Table 3 contrasts the final SVM model with 

a benchmark multiple linear regression (MLR) approach, tested on the held-out 20% 

data. 

Table 3 - Test Set Performance Comparison 

Model R2 MAE (mm) MSE (mm2) 
SVM (RBF) 0.905 1.43 3.19 

Multiple Linear Regression 0.761 2.17 6.08 
 

 
Figure 1 - Predicted vs. Observed Frost Heave for the Test Set (SVM) 

 

The SVM showed a substantial improvement over MLR in terms of variance 

explained (R2 increased by ≈ 0.14) and error metrics (MAE and MSE reduced by 

notable margins). Figure 1 depicts a scatter plot of observed vs. predicted frost heave 

for the SVM model, illustrating a close alignment with the y = x reference line. 
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Sensitivity Analysis. A sensitivity analysis was performed to quantify the 

influence of each predictor on frost heave. Each input was systematically varied across 

its observed range while holding all other inputs at their mean values. Figure 2 shows 

the relative importance scores, reflecting how changes in a single variable affect the 

model’s output. 

 

 
Figure 2 - Sensitivity Analysis: Relative Importance of Input Variables in  

Frost Heave Prediction 

 

The freezing index exhibited the highest impact, highlighting the critical role of 

prolonged subfreezing conditions in driving frost heave. Silt content, liquid limit, and 

precipitation also showed notable effects, consistent with the well-known influence of 

soil capillarity and moisture on ice lens formation [2]. 

4.Discussion 

Interpretation of SVM Performance. The SVM’s superior performance over MLR 

underscores the non-linear interplay among soil properties (e.g., silt content, plasticity) 

and climatic factors (e.g., cumulative degree-days of freezing). Linear approaches 

struggle to capture this complexity, especially where threshold or multiplicative effects 

emerge (e.g., once soils exceed certain moisture or plasticity limits, frost heave may 

escalate disproportionately) [8]. 
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Furthermore, the robust regularization inherent in SVM helps prevent overfitting, 

leading to stable generalization across varied soil-climate combinations. The grid 

search and cross-validation procedure were essential in identifying an optimal 

parameter set that balanced accuracy with model complexity. 

Practical Implications for Road Embankment Design. Material Selection and 

Layer Configuration. By linking geotechnical and climatic factors to expected heave 

magnitudes, practitioners can screen prospective borrow materials more effectively. 

For instance, soils with lower silt fractions or stabilized soils with reduced plasticity 

indices can be strategically used in upper layers. 

Climatic Adaptation. As freezing index and precipitation patterns shift, the 

predictive model allows engineers to anticipate potential increases in heave severity. 

This proactive approach supports the incorporation of additional protective measures 

such as insulation layers, drainage improvements, or specialized additives in 

susceptible areas. 

Life-Cycle Cost Analysis. Reliable frost heave forecasts feed into life-cycle cost 

models, allowing agencies to estimate the economic benefits of investing in robust 

designs or timely maintenance. By quantifying future risks, the decision-making 

process is more data-driven, ultimately reducing the total cost of ownership for 

roadway assets. 

Limitations and Future Directions. Despite promising outcomes, several 

limitations must be acknowledged. First, the accuracy of frost heave measurements 

depends on the precision and calibration of in-situ sensors. Second, while the freezing 

index is a valuable proxy, it may not fully capture transient freeze-thaw cycles or soil 

moisture changes in real time. Incorporating advanced thermal-hydraulic modeling or 

higher-resolution climate data could further refine predictions. 

Future research could explore: 

• Ensemble Learning: Methods like Gradient Boosted Trees or Random Forests 

could be compared against SVM to investigate gains in predictive performance. 

• Physics-Informed Machine Learning: Hybrid approaches that embed physical 

constraints within the model architecture, ensuring consistency with established frost 
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heave theories. 

• Geospatial Generalization: Large-scale studies spanning multiple geographic 

regions would validate model scalability, capturing broader variations in soil 

mineralogy, drainage conditions, and weather extremes. 

5.Conclusion and Future Work 

This study demonstrates a robust machine learning methodology for predicting 

frost heave in road embankments by integrating detailed soil characterization and 

meteorological variables. Key findings include: 

• Enhanced Accuracy: The best SVM model achieved an R2 of 0.905 on the test 

set, notably outperforming multiple linear regression. 

• Dominant Influence of Freezing Index: Sensitivity analysis identified 

cumulative cold exposure as a primary driver of frost heave, with silt content and soil 

plasticity also playing significant roles. 

• Design and Maintenance Applications: The model’s predictive capability aids in 

material selection, layer configuration, and proactive maintenance strategies, 

potentially lowering life-cycle costs. 

Future work should incorporate ensemble machine learning methods, higher-

resolution climate inputs, and expanded datasets from diverse geoclimatic regions. 

Integrating mechanistic insights with data-driven techniques holds promise for refining 

frost heave models, ultimately guiding more resilient infrastructure in cold 

environments. 
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