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Abstract. Frost heave in road embankments is a critical issue in cold-region geotechnical
engineering, leading to surface distresses, differential settlements, and maintenance challenges. As
climate patterns evolve, accurate frost heave prediction becomes increasingly essential for designing
resilient pavements. This study presents an advanced Support Vector Machine (SVM) framework to
predict frost heave based on comprehensive soil parameters (grain size distribution, Atterberg limits,
moisture content, organic matter) and meteorological variables (air temperature, precipitation,
freezing index). A multi-year dataset was compiled from laboratory tests and field instrumentation at
selected cold-region sites, capturing variations in soil types and climatic conditions. The SVM model,
utilizing a Radial Basis Function kernel, was optimized through grid search and ten-fold cross-
validation to balance complexity and generalization. Performance metrics, including the coefficient
of determination (R’), mean absolute error (MAE), and mean squared error (MSE), demonstrated a
significant improvement over conventional multiple linear regression (MLR) models. The findings
underscore the advantages of leveraging machine learning to capture the non-linear interplay of soil
and environmental factors, ultimately guiding the design of more durable road embankments in
regions prone to frost heave.
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Introduction.

Frost heave is a geotechnical process where soils expand upon freezing due to the
formation of ice lenses. It is particularly problematic for pavements in cold-climate
regions, as it can induce longitudinal and transverse cracks, faulting at joints, and
significant roughness on road pavements [ 1]. The critical factors controlling frost heave
include soil grain size distribution, mineralogy, water availability, and thermal
gradients [2].

With shifting climate patterns, freeze-thaw cycles in many regions are becoming
more frequent or irregular, posing further challenges to pavement engineers [3].

Traditional empirical or semi-empirical methods, while offering initial estimates, often
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lack the flexibility to adapt to site-specific complexities or variable climatic conditions
[4-6]. Moreover, designing embankments resistant to frost heave often demands a
holistic integration of soil properties, in-situ measurements, and weather predictions.

Recent advancements in computational modeling have paved the way for machine
learning approaches to tackle geotechnical problems [7]. Among these, Support Vector
Machines (SVMs) have gained attention for their ability to handle non-linear
relationships and avoid overfitting through robust regularization [8]. The objective of
this research is to develop a framework for using SVM-based modeling to predict frost
heave in road embankments. Specifically, we explore how advanced SVM
configurations can integrate detailed soil characterization and meteorological
parameters to yield accurate, site-specific frost heave predictions.

The remainder of this paper is organized as follows. Section 1 provides an
expanded overview of the fundamental mechanisms of frost heave and relevant
predictive methods. Section 2 details data acquisition, preprocessing steps, and the
theoretical foundations of SVM regression. Section 3 presents and discusses the results
of hyperparameter tuning, model performance, and sensitivity analyses. Section 4
offers a deeper interpretation of the findings and contextualizes them within existing
literature. Finally, Section 5 concludes the study, offering implications for future
research and practical engineering applications.

Main text.

1.Background on Frost Heave and Predictive Approaches

Frost Heave Mechanisms. Frost heave occurs when subfreezing temperatures
induce ice crystal growth within the pore structure of soils. Water is drawn from
unfrozen zones through capillary and cryogenic suction forces, leading to the
progressive development of ice lenses. Fine-grained soils, especially silts with high
capillarity, are particularly susceptible [1-6]. The amount of heave depends on: (1) soil
texture and structure, (2) the rate of freezing, (3) thermal gradient depth, and (4) soil-
water interaction, including water table level [2].

Traditional and Emerging Predictive Methods:

1) Empirical and Semi-Empirical Methods. Early methods relied on index
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parameters such as frost-susceptibility classifications based on grain size distribution
and plasticity indices. Empirical correlations often link measured frost heave to a
freezing index or seasonal freezing depth. While straightforward, these methods may
be unreliable when site conditions or climate variables deviate from the original
calibration datasets [9, 10].

2) Mechanistic Modeling. More rigorous approaches incorporate heat and mass
transfer models to simulate ice lens formation [2]. These models capture thermal
gradients and water migration but require extensive soil-specific parameters (e.g.,
thermal conductivity, hydraulic conductivity, unfrozen water content) and detailed
climatic data. Calibration can be complex, and errors in parameter estimation propagate
through the model.

3) Machine Learning. Machine learning methods, including Artificial Neural
Networks, Random Forests, and SVMs, bypass many limitations of purely physics-
based or empirical models by learning patterns directly from data. SVMs, in particular,
excel in handling non-linear relationships through kernel functions and have
demonstrated robustness in various geotechnical applications such as slope stability
and soil classification [7]. However, successful implementation requires careful data
preprocessing, parameter tuning, and validation to ensure that the model generalizes
well beyond the training dataset.

2.Methodology

Data Collection and Preprocessing. A multi-year, multi-site dataset was collated
from ongoing geotechnical monitoring projects in cold regions. Comprehensive
laboratory and field investigations were performed on representative soil samples used
in road embankment construction. Table 1 summarizes the geotechnical parameters for
each soil sample.

Meteorological data were gathered from local weather stations, recording average
monthly temperature, total precipitation, and a calculated freezing index (accumulated
degree-days below 0-C).

Frost heave displacements were continuously recorded via extensometers and

settlement plates installed at varying depths in the embankment sections. The measured
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heave data were averaged to single values (in mm) per winter season for each tested

location. Where sensor readings appeared inconsistent (e.g., calibration errors), they

were filtered through cross-checks with nearby gauges or omitted if irreparable.

Table 1 - Representative Soil Composition Data

Sample Grain Size Distribution (%) OM Content
ID Sand Silt Clay (%)
S1 34.2 54.8 11.0 2.58
S2 41.6 41.1 17.3 3.12
S3 22.7 58.3 19.0 3.94
S4 48.5 29.4 22.1 2.09
S5 26.3 59.8 13.9 4.87
S6 14.8 66.7 18.5 5.96
S7 38.9 44.1 17.0 3.41
S8 53.2 31.6 15.2 2.16
S9 19.4 64.3 16.3 3.84

S10 31.5 57.2 11.3 3.62

A total of 10 soil types x 5 winter seasons X 4 replicate measurements were
compiled. Each entry combined soil parameters, meteorological factors, and the
measured frost heave. Numerical variables were standardized to zero mean and unit
variance to facilitate model training [7]. The dataset was then randomly split into
training (80%) and testing (20%) subsets, ensuring each soil category and winter
season was represented proportionally.

Support Vector Machine (SVM) Formulation. Support Vector Regression (SVR)
with the Radial Basis Function (RBF) kernel was used to model frost heave (y) as a
function of input features x € R (soil and meteorological parameters). In the primal

form, the objective is to minimize:

. ) *

w:;n;ng > w2 + CEEL (& + &) (1)
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subjectto Sw-p(x;)+b—y;, <e+¢ 2)
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where C is the penalty parameter, ¢ is the epsilon-tube defining the margin of

tolerance, and ¢;, &, represent positive and negative errors, respectively. The non-
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linear mapping ¢(x) is implicitly handled through the RBF kernel:
K(x, x) = exp(—ylix = x'II?), 3)

where v is the kernel parameter controlling the width of the Gaussian function.

Optimal hyperparameters (C, y, €) were selected via a grid search with ten-fold
cross-validation, maximizing the R? on the validation folds [11]. This process
systematically varied each parameter over a predefined range to identify the best
combination.

Model Evaluation Metrics. To robustly assess predictive accuracy, three
standard metrics were employed:

Coefficient of Determination (R?):

2 _ 4 Zilyi=9)?
R =156 )

where y; is the observed frost heave, y; is the predicted frost heave, and y is the
mean of observed frost heave.
Mean Absolute Error (MAE):
MAE = -3, |y; - 3l (5)
providing an intuitive measure of average absolute deviation from observed values.
MSE = =31 | (y; — 9)° (6)
emphasizing larger errors due to the square term.
These metrics collectively capture both the variance explained by the model
and the magnitude of predictive error [7].
3. Results
Hyperparameter Tuning. The grid search explored C € {1, 10, 100, 1000}, y
€ {0.001, 0.01, 0.1, 1}, and ¢ € {0.001, 0.01, 0.1}. The final choice was C = 100, y
= 0.01, and ¢ = 0.01 based on a balance of high R?> and low MAE across cross-
validation folds. Table 2 highlights a portion of the hyperparameter search results.
Although C = 1000 offered a marginally higher R? it showed signs of
overfitting (larger variance in fold-to-fold error). Thus, C = 100 was chosen to

maintain generalizability.
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Table 2 - Selected Hyperparameter Tuning Results (Cross-Validation)

Combination C Y € Cv CV MAE
R? (mm)
1 10 0.1 0.01 0.85 1.96
2 100 0.01 0.01 0.90 1.57
3 100 0.01 0.1 0.88 1.72
4 1000 0.01 0.01 0.91 1.51

Model Performance on Test Set. Table 3 contrasts the final SVM model with

a benchmark multiple linear regression (MLR) approach, tested on the held-out 20%

data.

Table 3 - Test Set Performance Comparison

Model R? MAE (mm) MSE (mm?)
SVM (RBF) 0.905 1.43 3.19
Multiple Linear Regression 0.761 2.17 6.08

Predicted vs. Observed Frost Heave
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Figure 1 - Predicted vs. Observed Frost Heave for the Test Set (SVM)

The SVM showed a substantial improvement over MLR in terms of variance
explained (R? increased by = 0.14) and error metrics (MAE and MSE reduced by
notable margins). Figure 1 depicts a scatter plot of observed vs. predicted frost heave

for the SVM model, illustrating a close alignment with the y = x reference line.
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Sensitivity Analysis. A sensitivity analysis was performed to quantify the
influence of each predictor on frost heave. Each input was systematically varied across
its observed range while holding all other inputs at their mean values. Figure 2 shows
the relative importance scores, reflecting how changes in a single variable affect the

model’s output.

Sensitivity Analysis: Variable Importance in Frost Heave Prediction

Freezing Index

Silt Content

Liquid Limit

Precipitation

Sand Content

Clay Content

OM Content

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Relative Importance

Figure 2 - Sensitivity Analysis: Relative Importance of Input Variables in

Frost Heave Prediction

The freezing index exhibited the highest impact, highlighting the critical role of
prolonged subfreezing conditions in driving frost heave. Silt content, liquid limit, and
precipitation also showed notable effects, consistent with the well-known influence of
soil capillarity and moisture on ice lens formation [2].

4.Discussion

Interpretation of SVM Performance. The SVM’s superior performance over MLR
underscores the non-linear interplay among soil properties (e.g., silt content, plasticity)
and climatic factors (e.g., cumulative degree-days of freezing). Linear approaches
struggle to capture this complexity, especially where threshold or multiplicative effects
emerge (e.g., once soils exceed certain moisture or plasticity limits, frost heave may

escalate disproportionately) [8].
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Furthermore, the robust regularization inherent in SVM helps prevent overfitting,
leading to stable generalization across varied soil-climate combinations. The grid
search and cross-validation procedure were essential in identifying an optimal
parameter set that balanced accuracy with model complexity.

Practical Implications for Road Embankment Design. Material Selection and
Layer Configuration. By linking geotechnical and climatic factors to expected heave
magnitudes, practitioners can screen prospective borrow materials more effectively.
For instance, soils with lower silt fractions or stabilized soils with reduced plasticity
indices can be strategically used in upper layers.

Climatic Adaptation. As freezing index and precipitation patterns shift, the
predictive model allows engineers to anticipate potential increases in heave severity.
This proactive approach supports the incorporation of additional protective measures
such as insulation layers, drainage improvements, or specialized additives in
susceptible areas.

Life-Cycle Cost Analysis. Reliable frost heave forecasts feed into life-cycle cost
models, allowing agencies to estimate the economic benefits of investing in robust
designs or timely maintenance. By quantifying future risks, the decision-making
process is more data-driven, ultimately reducing the total cost of ownership for
roadway assets.

Limitations and Future Directions. Despite promising outcomes, several
limitations must be acknowledged. First, the accuracy of frost heave measurements
depends on the precision and calibration of in-situ sensors. Second, while the freezing
index is a valuable proxy, it may not fully capture transient freeze-thaw cycles or soil
moisture changes in real time. Incorporating advanced thermal-hydraulic modeling or
higher-resolution climate data could further refine predictions.

Future research could explore:

* Ensemble Learning: Methods like Gradient Boosted Trees or Random Forests
could be compared against SVM to investigate gains in predictive performance.

* Physics-Informed Machine Learning: Hybrid approaches that embed physical

constraints within the model architecture, ensuring consistency with established frost

ISSN 2663-5712 61 www.sworldjournal.com



R
A5

SWorldJournal Issue 33/ Part 2 (Vg
Sy

heave theories.

* Geospatial Generalization: Large-scale studies spanning multiple geographic
regions would validate model scalability, capturing broader variations in soil
mineralogy, drainage conditions, and weather extremes.

5.Conclusion and Future Work

This study demonstrates a robust machine learning methodology for predicting
frost heave in road embankments by integrating detailed soil characterization and
meteorological variables. Key findings include:

 Enhanced Accuracy: The best SVM model achieved an R? of 0.905 on the test
set, notably outperforming multiple linear regression.

*Dominant Influence of Freezing Index: Sensitivity analysis identified
cumulative cold exposure as a primary driver of frost heave, with silt content and soil
plasticity also playing significant roles.

* Design and Maintenance Applications: The model’s predictive capability aids in
material selection, layer configuration, and proactive maintenance strategies,
potentially lowering life-cycle costs.

Future work should incorporate ensemble machine learning methods, higher-
resolution climate inputs, and expanded datasets from diverse geoclimatic regions.
Integrating mechanistic insights with data-driven techniques holds promise for refining
frost heave models, ultimately guiding more resilient infrastructure in cold

environments.
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