COMPARISON OF DATA CLUSTERING ALGORITHMS

Authors

DOI:

https://doi.org/10.30888/2663-5712.2024-23-00-038

Keywords:

data clustering, cluster analysis, K-Means, Hierarchical Agglomerative Clustering (HAC), Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Expectation–Maximization clustering using Gaussian Mixture Models (GMM).

Abstract

The article compares the comparison of data clustering algorithms: K-Means, Hierarchical Agglomerative Clustering (HAC), Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Expectation–Maximization clustering using Gaussian Mixture Model

Metrics

Metrics Loading ...

References

. Simulations, Of & Zaidi, Habib & Labb, Claire & Morel, Christian. (1999). Improvement of the performance and accuracy of PET Monte Carlo simulations. Proc. SPIE. 3659. 10.1117/12.349537

Doroshenko I.V., Knihnitska T.V., Deretorska T.I. Comparison of machine learning algorithms for predicting mortality from Covid-19 virus // Sworld Jornal Issue No11, Part 2 January 2022 – P. 72-77 (https://www.sworldjournal.com/index.php/swj/article/view/swj11-02-045).

Published

2024-01-30

How to Cite

Дорошенко, І., Кнігніцька, Т., & Крештанович, М. (2024). COMPARISON OF DATA CLUSTERING ALGORITHMS. SWorldJournal, 1(23-01), 116–127. https://doi.org/10.30888/2663-5712.2024-23-00-038

Issue

Section

Articles