ON THE DATA-SET STRUCTURE FOR TRAINING GENERATIVE NEURAL NETWORKS IN PROTEIN DESIGN
DOI:
https://doi.org/10.30888/2663-5712.2024-28-00-016Keywords:
Neural network, data-set, data structure, atoms coordinates, coordinate alignment procedureAbstract
The paper considers the ways of normalizing a data set that can be used to train neural networks used for designing proteins or other large organic molecules with a complex structure. The paper considers the ways of translational transformation of coordiMetrics
References
Hou, Q., Waury, K., Gogishvili, D., Feenstra, K.A. Ten quick tips for sequence-based prediction of protein properties using machine learning // PLoS Computational Biology. — 2022. — Т. 18, №12. — e1010669. DOI: https://doi.org/10.1371/journal.pcbi.1010669.
Shindyalov, I.N., Bourne, P.E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path // Protein Engineering, Design and Selection. — 1998. — Т. 11, №9. — С. 739–747. DOI: https://doi.org/10.1093/protein/11.9.739.
Blay, V., Pei, D. Serine proteases: how did chemists tease out their catalytic mechanism? // ChemTexts. — 2019. — Т. 5. — С. 19. DOI: https://doi.org/10.1007/s40828-019-0093-4.
Falkenstein, P., Zhao, Z., Di Pede-Mattatelli, A., Künze, G., Sommer, M., Sonnendecker, C., Zimmermann, W., Colizzi, F., Matysik, J., Song, C. // ACS Catalysis. — 2023. — Т. 13, №10. — С. 6919-6933. DOI: https://doi.org/10.1021/acscatal.3c00259.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.