ON THE DATA-SET STRUCTURE FOR TRAINING GENERATIVE NEURAL NETWORKS IN PROTEIN DESIGN

Authors

DOI:

https://doi.org/10.30888/2663-5712.2024-28-00-016

Keywords:

Neural network, data-set, data structure, atoms coordinates, coordinate alignment procedure

Abstract

The paper considers the ways of normalizing a data set that can be used to train neural networks used for designing proteins or other large organic molecules with a complex structure. The paper considers the ways of translational transformation of coordi

Metrics

PDF views
12
Jan 2025Jul 2025Jan 20266.0

References

Hou, Q., Waury, K., Gogishvili, D., Feenstra, K.A. Ten quick tips for sequence-based prediction of protein properties using machine learning // PLoS Computational Biology. — 2022. — Т. 18, №12. — e1010669. DOI: https://doi.org/10.1371/journal.pcbi.1010669.

Shindyalov, I.N., Bourne, P.E. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path // Protein Engineering, Design and Selection. — 1998. — Т. 11, №9. — С. 739–747. DOI: https://doi.org/10.1093/protein/11.9.739.

Blay, V., Pei, D. Serine proteases: how did chemists tease out their catalytic mechanism? // ChemTexts. — 2019. — Т. 5. — С. 19. DOI: https://doi.org/10.1007/s40828-019-0093-4.

Falkenstein, P., Zhao, Z., Di Pede-Mattatelli, A., Künze, G., Sommer, M., Sonnendecker, C., Zimmermann, W., Colizzi, F., Matysik, J., Song, C. // ACS Catalysis. — 2023. — Т. 13, №10. — С. 6919-6933. DOI: https://doi.org/10.1021/acscatal.3c00259.

Published

2024-11-30

How to Cite

Гайша, О., & Гайша, О. (2024). ON THE DATA-SET STRUCTURE FOR TRAINING GENERATIVE NEURAL NETWORKS IN PROTEIN DESIGN. SWorldJournal, 1(28-01), 43–49. https://doi.org/10.30888/2663-5712.2024-28-00-016

Issue

Section

Articles