TWO-STAGE DYNAMIC TRACKER FOR TRACEBILITY OF THE MOVING OBJECTS
DOI:
https://doi.org/10.30888/2663-5712.2025-32-01-006Keywords:
occlusion, convolutional neural network, tracker, model, pattern recognition, classificationAbstract
Object tracking in video is a challenging task in computer vision (CV). At the same time, there are a number of problems that complicate accurate and reliable tracking of objects in video streams, namely: occlusion (overlapping objects, changes in the apMetrics
References
Majhi R. K., Waoo A. A. ADVANCES IN COMPUTER VISION: NEW HORIZONS AND ONGOING CHALLENGES. ShodhKosh: Journal of Visual and Performing Arts. 2024. Т. 5, № 5. URL: https://doi.org/10.29121/shodhkosh.v5.i5.
1893.
Understanding of Convolutional Neural Network (CNN): A Review / P. Purwono et al. International Journal of Robotics and Control Systems. 2023. Vol. 2, no. 4. P. 739–748. URL: https://doi.org/10.31763/ijrcs.v2i4.888
Du L., Zhang R., Wang X. Overview of two-stage object detection algorithms. Journal of physics: conference series. 2020. Vol. 1544. P. 012033. URL: https://doi.org/10.1088/1742-6596/1544/1/012033
You only look once: unified, real-time object detection / J. Redmon et al. 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. 2016. URL: https://doi.org/10.1109/cvpr.2016
A Review of Multi‐Object Tracking in Recent Times / S. Li et al. IET Computer Vision. 2025. Vol. 19, no. 1. URL: https://doi.org/10.1049/cvi2.70010.
Taylor L. E., Mirdanies M., Saputra R. P. Optimized object tracking technique using Kalman filter. Journal of Mechatronics, Electrical Power, and Vehicular Technology. 2016. Vol. 7, no. 1. P. 57. URL: https://doi.org/10.14203/j.mev.2016.
v7.57-66.
Sort and Deep-SORT Based Multi-Object Tracking for Mobile Robotics: Evaluation with New Data Association Metrics / R. Pereira et al. Applied Sciences. 2022. Vol. 12, no. 3. P. 1319. URL: https://doi.org/10.3390/app12031319.
Велч Г., Бішоп Г. Вступ до фільтра Калмана [Електронний ресурс] / Г. Велч, Г. Бішоп.– Університет Північної Кароліни в Чапел-Гілл, Факультет комп’ютерних наук, 2006. – 16 с. – Режим доступу: https://www.cs.unc.edu/
~welch/media/pdf/kalman_intro.pdf
Bernardin K., Stiefelhagen R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. EURASIP Journal on Image and Video Processing. 2008. Vol. 2008. P. 1–10. URL: https://doi.org/10.1155/2008/246309 .
Multiple object tracking: A literature review / W. Luo et al. Artificial Intelligence. 2020. P. 103448. URL: https://doi.org/10.1016/j.artint.2020.
Zhang, Yifu & Sun, Peize & Jiang, Yi & Yu, Dongdong & Yuan, Zehuan & Luo, Ping & Liu, Wenyu & Wang, Xinggang. (2021). ByteTrack: Multi-Object Tracking by Associating Every Detection Box. URL: https://doi.org/10.48550/arXiv.
06864.
VisDrone-DET2020: The Vision Meets Drone Object Detection in Image Challenge Results / D. Du et al. SpringerLink. URL: https://doi.org/10.1007/978-3-030-66823-5_42.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.


