TWO-STAGE DYNAMIC TRACKER FOR TRACEBILITY OF THE MOVING OBJECTS

Authors

DOI:

https://doi.org/10.30888/2663-5712.2025-32-01-006

Keywords:

occlusion, convolutional neural network, tracker, model, pattern recognition, classification

Abstract

Object tracking in video is a challenging task in computer vision (CV). At the same time, there are a number of problems that complicate accurate and reliable tracking of objects in video streams, namely: occlusion (overlapping objects, changes in the ap

Metrics

Metrics Loading ...

References

Majhi R. K., Waoo A. A. ADVANCES IN COMPUTER VISION: NEW HORIZONS AND ONGOING CHALLENGES. ShodhKosh: Journal of Visual and Performing Arts. 2024. Т. 5, № 5. URL: https://doi.org/10.29121/shodhkosh.v5.i5.

1893.

Understanding of Convolutional Neural Network (CNN): A Review / P. Purwono et al. International Journal of Robotics and Control Systems. 2023. Vol. 2, no. 4. P. 739–748. URL: https://doi.org/10.31763/ijrcs.v2i4.888

Du L., Zhang R., Wang X. Overview of two-stage object detection algorithms. Journal of physics: conference series. 2020. Vol. 1544. P. 012033. URL: https://doi.org/10.1088/1742-6596/1544/1/012033

You only look once: unified, real-time object detection / J. Redmon et al. 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. 2016. URL: https://doi.org/10.1109/cvpr.2016

A Review of Multi‐Object Tracking in Recent Times / S. Li et al. IET Computer Vision. 2025. Vol. 19, no. 1. URL: https://doi.org/10.1049/cvi2.70010.

Taylor L. E., Mirdanies M., Saputra R. P. Optimized object tracking technique using Kalman filter. Journal of Mechatronics, Electrical Power, and Vehicular Technology. 2016. Vol. 7, no. 1. P. 57. URL: https://doi.org/10.14203/j.mev.2016.

v7.57-66.

Sort and Deep-SORT Based Multi-Object Tracking for Mobile Robotics: Evaluation with New Data Association Metrics / R. Pereira et al. Applied Sciences. 2022. Vol. 12, no. 3. P. 1319. URL: https://doi.org/10.3390/app12031319.

Велч Г., Бішоп Г. Вступ до фільтра Калмана [Електронний ресурс] / Г. Велч, Г. Бішоп.– Університет Північної Кароліни в Чапел-Гілл, Факультет комп’ютерних наук, 2006. – 16 с. – Режим доступу: https://www.cs.unc.edu/

~welch/media/pdf/kalman_intro.pdf

Bernardin K., Stiefelhagen R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. EURASIP Journal on Image and Video Processing. 2008. Vol. 2008. P. 1–10. URL: https://doi.org/10.1155/2008/246309 .

Multiple object tracking: A literature review / W. Luo et al. Artificial Intelligence. 2020. P. 103448. URL: https://doi.org/10.1016/j.artint.2020.

Zhang, Yifu & Sun, Peize & Jiang, Yi & Yu, Dongdong & Yuan, Zehuan & Luo, Ping & Liu, Wenyu & Wang, Xinggang. (2021). ByteTrack: Multi-Object Tracking by Associating Every Detection Box. URL: https://doi.org/10.48550/arXiv.

06864.

VisDrone-DET2020: The Vision Meets Drone Object Detection in Image Challenge Results / D. Du et al. SpringerLink. URL: https://doi.org/10.1007/978-3-030-66823-5_42.

Published

2025-07-30

How to Cite

Семко, О., & Винничук, Д. (2025). TWO-STAGE DYNAMIC TRACKER FOR TRACEBILITY OF THE MOVING OBJECTS. SWorldJournal, 1(32-01), 3–18. https://doi.org/10.30888/2663-5712.2025-32-01-006

Issue

Section

Articles

Most read articles by the same author(s)