PECULIARITIES OF ELECTRICAL NETWORK PARAMETERS ACCOUNTING WHEN USING MATHEMATICAL MODELS OF CURRENT CURVE SHAPE DISTORTION SOURCES

Authors

DOI:

https://doi.org/10.30888/2663-5712.2024-27-00-031

Keywords:

higher harmonic, electrical network, mathematical model, distortion source, frequency domain, harmonic analysis, current source, current harmonic, voltage harmonic, electrical network parameters, mode parameters

Abstract

Mathematical models of distortion sources are used to estimate possible distortions of the shapes of current and voltage curves. The operating modes of distortion sources may depend on the parameters of the electric network and the parameters of its mode.

Metrics

Metrics Loading ...

References

Harmonic analysis in frequency and time domain / A. Medina et al. IEEE transactions on power delivery. 2013. Vol. 28, no. 3. P. 1813–1821. URL: https://doi.org/10.1109/tpwrd.2013.2258688.

Mahmoud A., Shultz R. A method for analyzing harmonic distribution in A.C. power systems. IEEE transactions on power apparatus and systems. 1982. PAS-101, no. 6. P. 1815–1824. URL: https://doi.org/10.1109/tpas.1982.317235.

Semlyen A., Medina A. Computation of the periodic steady state in systems with nonlinear components using a hybrid time and frequency domain methodology. IEEE transactions on power systems. 1995. Vol. 10, no. 3. P. 1498–1504. URL: https://doi.org/10.1109/59.466497.

Segundo-Ramírez J., Medína A. An enhanced process for the fast periodic steady state solution of nonlinear systems by poincare map and extrapolation to the limit cycle. International journal of nonlinear sciences and numerical simulation. 2010. Vol. 11, no. 8. URL: https://doi.org/10.1515/ijnsns.2010.11.8.661.

Semlyen A., Shlash M. Principles of modular harmonic power flow methodology. IEE proceedings - generation, transmission and distribution. 2000. Vol. 147, no. 1. P. 1. URL: https://doi.org/10.1049/ip-gtd:20000024.

Analysis of approaches for modeling the low frequency emission of LED lamps / A. J. Collin et al. Energies. 2020. Vol. 13, no. 7. P. 1571. URL: https://doi.org/10.3390/en13071571.

Harmonic distortion in low voltage residential grids caused by LED lamps / J. Hernández et al. Power quality in the energy transition : 2022 20th International Conference on Harmonics & Quality of Power (ICHQP), Naples, 29 May – 1 June 2022. 2022. P. 1–6. URL: https://doi.org/doi:10.1109/ICHQP53011.2022.9808589.

Medina A., Arrillaga J., Acha E. Sparsity-oriented hybrid formulation of linear multiports and its application to harmonic analysis. IEEE transactions on power delivery. 1990. Vol. 5, no. 3. P. 1453–1458. URL: https://doi.org/10.1109/61.57988.

Dommel H. W., Yan A., Wei S. Harmonics from transformer saturation. IEEE transactions on power delivery. 1986. Vol. 1, no. 2. P. 209–215. URL: https://doi.org/10.1109/tpwrd.1986.4307952.

The Harmonic Domain. A frame of reference for power system harmonic analysis / J. Arrillaga et al. IEEE transactions on power systems. 1995. Vol. 10, no. 1. P. 433–440. URL: https://doi.org/10.1109/59.373968.

Impact of reference conditions on the frequency coupling matrix of a plug-in electric vehicle charger / J. E. Caicedo et al. 2018 18th international conference on harmonics and quality of power (ICHQP), Ljubljana, 13–16 May 2018. 2018. URL: https://doi.org/10.1109/ichqp.2018.8378898.

A harmonically coupled admittance matrix model for AC/DC converters / Y. Sun et al. IEEE transactions on power systems. 2007. Vol. 22, no. 4. P. 1574–1582. URL: https://doi.org/10.1109/tpwrs.2007.907514.

Yahyaie F., Lehn P. W. Using frequency coupling matrix techniques for the analysis of harmonic interactions. IEEE transactions on power delivery. 2016. Vol. 31, no. 1. P. 112–121. URL: https://doi.org/10.1109/tpwrd.2015.2442573.

Published

2024-09-30

How to Cite

Нестерович, В. (2024). PECULIARITIES OF ELECTRICAL NETWORK PARAMETERS ACCOUNTING WHEN USING MATHEMATICAL MODELS OF CURRENT CURVE SHAPE DISTORTION SOURCES. SWorldJournal, 1(27-01), 77–86. https://doi.org/10.30888/2663-5712.2024-27-00-031

Issue

Section

Articles