MECHANICAL PROPERTIES OF THE SURFACE LAYER OF CUBIC BORON NITRIDE-BASED COMPOSITES

Authors

DOI:

https://doi.org/10.30888/2663-5712.2025-33-01-069

Keywords:

Superhard composites, cubic boron nitride (cBN), surface layer, mechanical properties, scratch testing, sclerometry, tribospectral analysis, strain-spectral analysis, microhardness, wear resistance.

Abstract

The article investigates the mechanical properties of the surface layer of superhard composites based on cubic boron nitride (cBN), which are widely used in cutting tools operating under extreme thermomechanical conditions. The purpose of the work is to j

References

Shen Z. et al. Review of indentation size effect in crystalline materials: Progress, challenges and opportunities. J. of Mat. Res. and Technol. 2024. Vol. 31. P. 117–132. DOI: 10.1016/j.jmrt.2024.06.071

Oliver W.C., Pharr G.M. Nanoindentation in materials research: Past, present, and future. MRS Bull. 2010. Vol. 35, no. 11. P. 897–907. DOI: 10.1557/mrs2010.717.

Harsono E., Swaddiwudhipong S., Liu Z.S. The effect of friction on indentation test results. Model. and Simulat. in Mat. Sci. and Eng. 2008. Vol. 16, no. 6. P. 065001. DOI: 10.1088/0965-0393/16/6/065001.

Mendas M. et al. Microhardness model based on geometrically necessary dislocations for heterogeneous material. J. of Mat. Res. and Technol. 2021. 15, 2792–2801. DOI: 10.1016/j.jmrt.2021.09.093.

Abu Al-Rub R.K. Prediction of micro and nanoindentation size effect from conical or pyramidal indentation. Mech. of Mat. 2007. Vol. 39, no. 8. P. 787–802. DOI: 10.1016/j.mechmat.2007.02.001.

Sun S. et al. Scratching force and material removal mechanism of 2.5D SiO2f/SiO2 composites under single-abrasive scratch test. J. of Manufact. Proc. 2025. Vol. 153. P. 16–28. DOI: 10.1016/j.jmapro.2025.08.058.

Storchak M., Zakiev I., Zakiev V., Manokhin A. Coatings strength evaluation of cutting inserts using advanced multi-pass scratch method. Measurement. – 2022. – Vol. 191. 110745. DOI: 10.1016 / j. measurement. 2022.110745.

Storchak M. Mechanical Characteristics Generation in the Workpiece Subsurface Layers through Cutting. Crystals. 2023. Vol. 13, no. 5. P. 761. DOI: 10.3390/cryst13050761.

Guo J. et al. Recent progress of residual stress measurement methods: A review / Chin. J. of Aeronaut. 2019. DOI: 10.1016/j.cja.2019.10.010.

Dean J., Aldrich-Smith G., Clyne T.W. Use of nanoindentation to measure residual stresses in surface layers. Acta Mat. 2011. Vol. 59, no. 7. P. 2749–2761. DOI: 10.1016/j.actamat.2011.01.014.

Alaboodi A.S., Hussain Z. Finite element modeling of nano-indentation technique to characterize thin film coatings. J. of King Saud University – Eng. Sci. 2019. Vol. 31, no. 1. P. 61–69. DOI: 10.1016/j.jksues.2017.02.001.

Khan M.K. et al. A combined experimental and finite element approach for determining mechanical properties of aluminium alloys by nanoindentation. Computat. Mat. Sci. 2010. Vol. 49, no. 4. P. 751–760. DOI: 10.1016/j.commatsci.2010.06.018.

Zaporozhets V.V. Dynamic characteristics of the strength of surface layers and their evaluation. Frict. and wear. – 1980. – Vol. 1. – № 4. – P.602–609.

Lyashko V.A., Potemkin M.M., Klimenko S.A. Comparative durability of materials in wear. Wear. 1998. vol. 216. P. 239–243.

Клименко С.А., Мельнійчук Ю.О, Встовський Г.В. Фрактальна параметризація структури матеріалів, їх оброблюваність різанням та зносостійкість різального інструменту. Київ : ІНМ. 2009. 172 с.

References.

Shen Z. et al. (2024). Review of indentation size effect in crystalline materials: Progress, challenges and opportunities. J. of Mat. Res. and Technol. Vol. 31. P. 117–132. DOI: 10.1016/j.jmrt.2024.06.071

Oliver W.C. (2010). Pharr G.M. Nanoindentation in materials research: Past, present, and future. MRS Bull. Vol. 35, no. 11. P. 897–907. DOI: 10.1557/mrs2010.717.

Harsono E., Swaddiwudhipong S., Liu Z.S. (2008). The effect of friction on indentation test results. Model. and Simulat. in Mat. Sci. and Eng. Vol. 16, no. 6. P. 065001. DOI: 10.1088/0965-0393/16/6/065001.

Mendas M. et al. (2021). Microhardness model based on geometrically necessary dislocations for heterogeneous material. J. of Mat. Res. and Technol. 15, 2792–2801. DOI: 10.1016/j.jmrt.2021.09.093.

Abu Al-Rub R.K. (2007). Prediction of micro and nanoindentation size effect from conical or pyramidal indentation. Mech. of Mat. Vol. 39, no. 8. P. 787–802. DOI: 10.1016/j.mechmat.2007.02.001.

Sun S. et al. (2025). Scratching force and material removal mechanism of 2.5D SiO2f/SiO2 composites under single-abrasive scratch test. J. of Manufact. Proc. Vol. 153. P. 16–28. DOI: 10.1016/j.jmapro.2025.08.058.

Storchak M., Zakiev I., Zakiev V., Manokhin A. (2022). Coatings strength evaluation of cutting inserts using advanced multi-pass scratch method. Measurement. Vol. 191. 110745. DOI: 10.1016 / j. measurement. 2022.110745.

Storchak M. (2023). Mechanical Characteristics Generation in the Workpiece Subsurface Layers through Cutting. Crystals. Vol. 13, no. 5. P. 761. DOI: 10.3390/cryst13050761.

Guo J. et al. (2019). Recent progress of residual stress measurement methods: A review / Chin. J. of Aeronaut. DOI: 10.1016/j.cja.2019.10.010.

Dean J., Aldrich-Smith G., Clyne T.W. (2011). Use of nanoindentation to measure residual stresses in surface layers. Acta Mat. Vol. 59, no. 7. P. 2749–2761. DOI: 10.1016/j.actamat.2011.01.014.

Alaboodi A.S., Hussain Z. (2019). Finite element modeling of nano-indentation technique to characterize thin film coatings. J. of King Saud University – Eng. Sci. Vol. 31, no. 1. P. 61–69. DOI: 10.1016/j.jksues.2017.02.001.

Khan M.K. et al. (2010). A combined experimental and finite element approach for determining mechanical properties of aluminium alloys by nanoindentation. Computat. Mat. Sci. Vol. 49, no. 4. P. 751–760. DOI: 10.1016/j.commatsci.2010.06.018.

Zaporozhets V.V. (1980). Dynamic characteristics of the strength of surface layers and their evaluation. Frict. and wear. Vol. 1, № 4. P.602–609.

Lyashko V.A., Potemkin M.M., Klimenko S.A. (1998). Comparative durability of materials in wear. Wear. Vol. 216. P. 239–243.

Klymenko S.A., Melniychuk Yu.O., Vstovsky G.V. Fractal parameterization of material structures, their machinability, and cutting tool wear resistance. Kyiv. INM, 2009. 172 p.

Published

2025-09-30

How to Cite

Клименко, С., Закієв, В., Манохін, А., Мельнійчук, Ю., Копєйкіна, М., Клименко, С., Чумак, А., & Рябченко, С. (2025). MECHANICAL PROPERTIES OF THE SURFACE LAYER OF CUBIC BORON NITRIDE-BASED COMPOSITES. SWorldJournal, 1(33-01), 54–71. https://doi.org/10.30888/2663-5712.2025-33-01-069

Issue

Section

Articles