МОЖЛИВОСТІ РІДИННОЇ БІОПСІЇ У ДІАГНОСТИЦІ РАКУ ЩИТОВИДНОЇ ЗАЛОЗИ

Автор(и)

  • Микита Поліон Дніпровський державний медичний університет https://orcid.org/0000-0001-9307-1411
  • Ростислав Шевченка Харківський національний медичний університет https://orcid.org/0000-0002-6535-0939
  • Володимир Старих Харківський національний медичний університет https://orcid.org/0000-0001-9577-8760

DOI:

https://doi.org/10.30888/2663-5712.2021-09-01-020

Ключові слова:

 дифференцированный рак щитовидной железы, анапластический рак щитовидной железы, медуллярный рак щитовидной железы, жидкостная биопсия, диагностика, прогноз, терапия.

Анотація

Рак щитовидной железы – самое распространенное злокачественное новообразование эндокринной системы, охватывающее различные образования с различными гистологическими особенностями и клиникой. Диагностика, терапевтический подход и наблюдение за раком щитов

Metrics

Metrics Loading ...

Посилання

Brown R.L., De Souza J.A., Cohen E.E. Thyroid cancer: Burden of illness and management of disease. J. Cancer. 2011;2:193–199. doi: 10.7150/jca.2.193.

Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics, 2021. CA Cancer J. Clin. 2021;71:7–33. doi: 10.3322/caac.21654.

Olson E., Wintheiser G., Wolfe K.M., Droessler J., Silberstein P.T. Epidemiology of thyroid cancer: A review of the national cancer database, 2000–2013. Cureus. 2019;11:e4127. doi: 10.7759/cureus.4127.

Lloyd R.V. WHO classification of tumours of endocrine organs. IARC. 2017;10:354.

Kure S., Ohashi R. Thyroid hürthle cell carcinoma: Clinical, pathological, and molecular features. Cancers. 2020;13:26. doi: 10.3390/cancers13010026.

Schlumberger M., Leboulleux S. Current practice in patients with differentiated thyroid cancer. Nat. Rev. Endocrinol. 2021;17:176–188. doi: 10.1038/s41574-020-00448-z.

Volante M., Lam A.K., Papotti M., Tallini G. Molecular pathology of poorly differentiated and anaplastic thyroid cancer: What do pathologists need to know? Endocr. Pathol. 2021;32:63–76. doi: 10.1007/s12022-021-09665-2.

Barletta J.A., Nosé V., Sadow P.M. Genomics and epigenomics of medullary thyroid carcinoma: From sporadic disease to familial manifestations. Endocr. Pathol. 2021;32:35–43. doi: 10.1007/s12022-021-09664-3

Manzella L., Stella S., Pennisi M.S., Tirrò E., Massimino M., Romano C., Puma A., Tavarelli M., Vigneri P. New insights in thyroid cancer and p53 family proteins. Int. J. Mol. Sci. 2017;18:1325. doi: 10.3390/ijms18061325.

Tirrò E., Martorana F., Romano C., Vitale S.R., Motta G., Di Gregorio S., Massimino M., Pennisi M.S., Stella S., Puma A., et al. Molecular alterations in thyroid cancer: From bench to clinical practice. Genes. 2019;10:709. doi: 10.3390/genes10090709.

Massimino M., Vigneri P., Fallica M., Fidilio A., Aloisi A., Frasca F., Manzella L. IRF5 promotes the proliferation of human thyroid cancer cells. Mol. Cancer. 2012;11:21. doi: 10.1186/1476-4598-11-21.

Messina R.L., Sanfilippo M., Vella V., Pandini G., Vigneri P., Nicolosi M.L., Gianì F., Vigneri R., Frasca F. Reactivation of p53 mutants by p53 reactivation and induction of massive apoptosis in thyroid cancer cells. Int. J. Cancer. 2011;130:2259–2270. doi: 10.1002/ijc.26228.

Prete A., De Souza P.B., Censi S., Muzza M., Nucci N., Sponziello M. Update on fundamental mechanisms of thyroid cancer. Front. Endocrinol. 2020;11:102. doi: 10.3389/fendo.2020.00102.

Ghafouri-Fard S., Shirvani-Farsani Z., Taheri M. The role of microRNAs in the pathogenesis of thyroid cancer. Non-Coding RNA Res. 2020;5:88–98. doi: 10.1016/j.ncrna.2020.06.001.

Mazeh H., Deutch T., Karas A., Bogardus K.A., Mizrahi I., Gur-Wahnon D., Ben-Dov I.Z. Next-generation sequencing identifies a highly accurate miRNA panel that distinguishes well-differentiated thyroid cancer from benign thyroid nodules. Cancer Epidemiol. Biomark. Prev. 2018;27:858–863. doi: 10.1158/1055-9965.EPI-18-0055.

Santiago K., Wongworawat Y.C., Khan S. Differential MicroRNA-signatures in thyroid cancer subtypes. J. Oncol. 2020;2020:2052396. doi: 10.1155/2020/2052396.

Cañadas-Garre M., Becerra-Massare P., Casares M.L.D.L.T., Moral J.V.-D., Céspedes-Mas S., Vílchez-Joya R., Fuentes T.M.-D., García-Calvente C., Piédrola-Maroto G., López-Nevot M.A., et al. Reduction of false-negative papillary thyroid carcinomas by the routine analysis of BRAFT1799A mutation on fine-needle aspiration biopsy specimens. Ann. Surg. 2012;255:986–992. doi: 10.1097/SLA.0b013e31824e8d70.

Filetti S., Durante C., Hartl D., Leboulleux S., Locati L., Newbold K., Papotti M., Berruti A. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019;30:1856–1883. doi: 10.1093/annonc/mdz400.

Massimino M., Tirrò E., Stella S., Frasca F., Vella V., Sciacca L., Pennisi M.S., Vitale S.R., Puma A., Romano C., et al. Effect of combined epigenetic treatments and ectopic nis expression on undifferentiated thyroid cancer cells. Anticancer Res. 2018;38:6653–6662. doi: 10.21873/anticanres.13032.

Rao S.N., Zafereo M., Dadu R., Busaidy N.L., Hess K., Cote G.J., Williams M.D., William W.N., Sandulache V., Gross N., et al. Patterns of treatment failure in anaplastic thyroid carcinoma. Thyroid. 2017;27:672–681. doi: 10.1089/thy.2016.0395.

Manzella L., Massimino M., Stella S., Tirrò E., Pennisi M.S., Martorana F., Motta G., Vitale S.R., Puma A., Romano C., et al. Activation of the IGF axis in thyroid cancer: Implications for tumorigenesis and treatment. Int. J. Mol. Sci. 2019;20:3258. doi: 10.3390/ijms20133258.

Krajewska J., Gawlik T., Jarzab B. Advances in small molecule therapy for treating metastatic thyroid cancer. Expert Opin. Pharmacother. 2017;18:1049–1060. doi: 10.1080/14656566.2017.1340939.

Porter A., Wong D.J. Perspectives on the treatment of advanced thyroid cancer: Approved therapies, resistance mechanisms, and future directions. Front. Oncol. 2021;10:592202. doi: 10.3389/fonc.2020.592202.

Priya S.R., Dravid C.S., Digumarti R., Dandekar M. Targeted therapy for medullary thyroid cancer: A review. Front. Oncol. 2017;7:238. doi: 10.3389/fonc.2017.00238.

De Rubis G., Krishnan S.R., Bebawy M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends Pharmacol. Sci. 2019;40:172–186. doi: 10.1016/j.tips.2019.01.006.

Alix-Panabières C., Pantel K. Liquid biopsy: From discovery to clinical application. Cancer Discov. 2021;11:858–873. doi: 10.1158/2159-8290.CD-20-1311.

Ignatiadis M., Lee M., Jeffrey S.S. Circulating tumor cells and circulating tumor DNA: Challenges and opportunities on the path to clinical utility. Clin. Cancer Res. 2015;21:4786–4800. doi: 10.1158/1078-0432.CCR-14-1190.

Gold B., Cankovic M., Furtado L.V., Meier F., Gocke C.D. Do circulating tumor cells, exosomes, and circulating tumor nucleic acids have clinical utility? J. Mol. Diagn. 2015;17:209–224. doi: 10.1016/j.jmoldx.2015.02.001.

Von Bubnoff N. Liquid biopsy: Approaches to dynamic genotyping in cancer. Oncol. Res. Treat. 2017;40:409–416. doi: 10.1159/000478864. 30. Van Dessel L.F., Vitale S.R., Helmijr J.C.A., Wilting S.M., Vlugt-Daane M., Hoop E.O.-D., Sleijfer S., Martens J.W.M., Jansen M.P.H.M., Lolkema M.P., et al. High-throughput isolation of circulating tumor DNA: A comparison of automated platforms. Mol. Oncol. 2018;13:392–402. doi: 10.1002/1878-0261.12415.

Pös O., Biró O., Szemes T., Nagy B. Circulating cell-free nucleic acids: Characteristics and applications. Eur. J. Hum. Genet. 2018;26:937–945. doi: 10.1038/s41431-018-0132-4.

Vitale S.R., Helmijr J.A., Gerritsen M., Coban H., van Dessel L.F., Beije N., van der Vlugt-Daane M., Vigneri P., Sieuwerts A.M., Dits N., et al. Detection of tumor-derived extracellular vesicles in plasma from patients with solid cancer. BMC Cancer. 2021;21:1–17. doi: 10.1186/s12885-021-08007-z.

Xu R., Rai A., Chen M., Suwakulsiri W., Greening D., Simpson R.J. Extracellular vesicles in cancer—Implications for future improvements in cancer care. Nat. Rev. Clin. Oncol. 2018;15:617–638. doi: 10.1038/s41571-018-0036-9.

Jee H.-G., Kim B.-A., Kim M., Yu H.W., Choi J.Y., Kim S.-J., Lee K.E. Expression of SLC5A5 in circulating tumor cells may distinguish follicular thyroid carcinomas from adenomas: Implications for blood-based preoperative diagnosis. J. Clin. Med. 2019;8:257. doi: 10.3390/jcm8020257.

Li Y.-R., Tseng C.-P., Hsu H.-L., Lin H.-C., Chen Y.-A., Chen S.-T., Liou M.-J., Lin J.-D. Circulating epithelial cells as potential biomarkers for detection of recurrence in patients of papillary thyroid carcinoma with positive serum anti-thyroglobulin antibody. Clin. Chim. Acta. 2018;477:74–80. doi: 10.1016/j.cca.2017.12.011.

Salvianti F., Giuliani C., Petrone L., Mancini I., Vezzosi V., Pupilli C., Pinzani P. Integrity and quantity of total cell-free DNA in the diagnosis of thyroid cancer: Correlation with cytological classification. Int. J. Mol. Sci. 2017;18:1350. doi: 10.3390/ijms18071350.

Perdas E., Stawski R., Kaczka K., Nowak D., Zubrzycka M. Altered levels of circulating nuclear and mitochondrial DNA in patients with Papillary Thyroid Cancer. Sci. Rep. 2019;9:1–7. doi: 10.1038/s41598-019-51000-7.

Pupilli C., Pinzani P., Salvianti F., Fibbi B., Rossi M., Petrone L., Perigli G., De Feo M.L., Vezzosi V., Pazzagli M., et al. Circulating BRAFV600E in the diagnosis and follow-up of differentiated papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 2013;98:3359–3365. doi: 10.1210/jc.2013-1072.

Hu S., Ewertz M., Tufano R.P., Brait M., Carvalho A.L., Liu D., Tufaro A.P., Basaria S., Cooper D.S., Sidransky D., et al. Detection of serum deoxyribonucleic acid methylation markers: A novel diagnostic tool for thyroid cancer. J. Clin. Endocrinol. Metab. 2006;91:98–104. doi: 10.1210/jc.2005-1810.

Li W., Zhang X., Lu X., You L., Song Y., Luo Z., Zhang J., Nie J., Zheng W., Xu D., et al. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. Cell Res. 2017;27:1243–1257. doi: 10.1038/cr.2017.121.

Khatami F., Teimoori-Toolabi L., Heshmat R., Nasiri S., Saffar H., Mohammadamoli M., Aghdam M.H., Larijani B., Tavangar S.M. Circulating ctDNA methylation quantification of two DNA methyl transferases in papillary thyroid carcinoma. J. Cell. Biochem. 2019;120:17422–17437. doi: 10.1002/jcb.29007.

Zane M., Agostini M., Enzo M.V., Ide E.C., Del Bianco P., Torresan F., Boschin I.M., Pennelli G., Saccani A., Rubello D., et al. Circulating cell-free DNA, SLC5A8 and SLC26A4 hypermethylation, BRAFV600E: A non-invasive tool panel for early detection of thyroid cancer. Biomed. Pharmacother. 2013;67:723–730. doi: 10.1016/j.biopha.2013.06.007.

Sato T., Harao M., Nakano S., Jotsuka T., Suda N., Yamashita J.-I. Circulating tumor cells detected by reverse transcription-polymerase chain reaction for carcinoembryonic antigen mRNA: Distinguishing follicular thyroid carcinoma from adenoma. Surgery. 2005;137:552–558. doi: 10.1016/j.surg.2004.11.006.

Chia S.-Y., Milas M., Reddy S.K., Siperstein A., Skugor M., Brainard J., Gupta M.K. Thyroid-stimulating hormone receptor messenger ribonucleic acid measurement in blood as a marker for circulating thyroid cancer cells and its role in the preoperative diagnosis of thyroid cancer. J. Clin. Endocrinol. Metab. 2006;92:468–475. doi: 10.1210/jc.2006-2088.

Mahmoudian-Sani M.-R., Mehri-Ghahfarrokhi A., Asadi-Samani M., Mobini G.-R. Serum miRNAs as biomarkers for the diagnosis and prognosis of thyroid cancer: A comprehensive review of the literature. Eur. Thyroid. J. 2017;6:171–177. doi: 10.1159/000468520.

Kondrotienė A., Daukša A., Pamedytytė D., Kazokaitė M., Žvirblienė A., Daukšienė D., Simanavičienė V., Klimaitė R., Golubickaitė I., Stakaitis R., et al. Plasma-derived miRNA-222 as a candidate marker for papillary thyroid cancer. Int. J. Mol. Sci. 2020;21:6445. doi: 10.3390/ijms21176445.

Perdas E., Stawski R., Kaczka K., Zubrzycka M. Analysis of let-7 family miRNA in plasma as potential predictive biomarkers of diagnosis for papillary thyroid cancer. Diagnostics. 2020;10:130. doi: 10.3390/diagnostics10030130.

Rosignolo F., Sponziello M., Giacomelli L., Russo D., Pecce V., Biffoni M., Bellantone R., Lombardi C.P., Lamartina L., Grani G., et al. Identification of thyroid-associated serum microRNA profiles and their potential use in thyroid cancer follow-up. J. Endocr. Soc. 2017;1:3–13. doi: 10.1210/js.2016-1032.

Samsonov R., Burdakov V., Shtam T., Radzhabova Z., Vasilyev D., Tsyrlina E., Titov S., Ivanov M., Berstein L., Filatov M., et al. Plasma exosomal miR-21 and miR-181a differentiates follicular from papillary thyroid cancer. Tumor Biol. 2016;37:12011–12021. doi: 10.1007/s13277-016-5065-3.

Zabegina L., Nazarova I., Knyazeva M., Nikiforova N., Slyusarenko M., Titov S., Vasilyev D., Sleptzov I., Malek A. MiRNA let-7 from TPO(+) extracellular vesicles is a potential marker for a differential diagnosis of follicular thyroid nodules. Cells. 2020;9:1917. doi: 10.3390/cells9081917.

Qiu Z.-L., Wei W.-J., Sun Z.-K., Shen C.-T., Song H.-J., Zhang X.-Y., Zhang G.-Q., Chen X.-Y., Luo Q.-Y. Circulating tumor cells correlate with clinicopathological features and outcomes in differentiated thyroid cancer. Cell. Physiol. Biochem. 2018;48:718–730. doi: 10.1159/000491898.

Ehlers M., Allelein S., Schwarz F., Hautzel H., Kuebart A., Schmidt M., Haase M., Dringenberg T., Schott M. Increased numbers of circulating tumor cells in thyroid cancer patients. Horm. Metab. Res. 2018;50:602–608. doi: 10.1055/a-0651-4913.

Jensen K., Thakur S., Patel A., Mendonca-Torres M.C., Costello J., Gomes-Lima C.J., Walter M., Wartofsky L., Burman K.D., Bikas A., et al. Detection of BRAFV600E in liquid biopsy from patients with papillary thyroid cancer is associated with tumor aggressiveness and response to therapy. J. Clin. Med. 2020;9:2481. doi: 10.3390/jcm9082481.

Gómez-Pérez A.M., Pareja I.M.C., Alemán J.G., Aragüez L.C., Ochoa A.S., Torres J.A., Vega M.M., Fernández C.C., Doblas I.M., Tinahones F.J. New molecular biomarkers in differentiated thyroid carcinoma: Impact of miR-146, miR-221 and miR-222 levels in the evolution of the disease. Clin. Endocrinol. 2019;91:187–194. doi: 10.1111/cen.13972.

Winkens T., Pachmann K., Freesmeyer M. The influence of radioiodine therapy on the number of circulating epithelial cells (CEC) in patients with differentiated thyroid carcinoma—A pilot study. Exp. Clin. Endocrinol. Diabetes. 2014;122:246–253. doi: 10.1055/s-0034-1370921.

Zheng L., Wang G., Guo W., Pan D., Xie L., He S., Luo C., Li H., Ran Y., Wu S., et al. NIS and epithelial-mesenchymal transition marker expression of circulating tumor cells for predicting and monitoring the radioactive iodine-131 therapy effect in differentiated thyroid cancers. Mol. Biol. Rep. 2019;46:4201–4212. doi: 10.1007/s11033-019-04873-w.

Allin D., Shaikh R., Carter P., Thway K., Sharabiani M., Gonzales-De-Castro D., O’Leary B., Garcia-Murillas I., Bhide S., Hubank M., et al. Circulating tumour DNA is a potential biomarker for disease progression and response to targeted therapy in advanced thyroid cancer. Eur. J. Cancer. 2018;103:165–175. doi: 10.1016/j.ejca.2018.08.013.

Almubarak H., Qassem E., Alghofaili L., Alzahrani A.S., Karakas B. Non-invasive molecular detection of minimal residual disease in papillary thyroid cancer patients. Front. Oncol. 2020;9:1510. doi: 10.3389/fonc.2019.01510.

Lubitz C.C., Zhan T., Gunda V., Amin S., Gigliotti B.J., Fingeret A.L., Holm T.M., Wachtel H., Sadow P.M., Wirth L.J., et al. Circulating BRAFV600E Levels correlate with treatment in patients with thyroid carcinoma. Thyroid. 2018;28:328–339. doi: 10.1089/thy.2017.0322.

Fussey J.M., Bryant J.L., Batis N., Spruce R.J., Hartley A., Good J.S., McCabe C.J., Boelaert K., Sharma N., Mehanna H. The clinical utility of cell-free DNA measurement in differentiated thyroid cancer: A systematic review. Front. Oncol. 2018;8:132. doi: 10.3389/fonc.2018.00132.

Wan J.C.M., Massie C., Garcia-Corbacho J., Mouliere F., Brenton J.D., Caldas C., Pacey S., Baird R., Rosenfeld N. Liquid biopsies come of age: Towards implementation of circulating tumour DNA. Nat. Rev. Cancer. 2017;17:223–238. doi: 10.1038/nrc.2017.7.

Cao S., Yu S., Yin Y., Su L., Hong S., Gong Y., Lv W., Li Y., Xiao H. Genetic alterations in cfDNA of benign and malignant thyroid nodules based on amplicon-based next-generation sequencing. Ann. Transl. Med. 2020;8:1225. doi: 10.21037/atm-20-4544.

Chuang T.C.Y., Chuang A.Y.C., Poeta L., Koch W.M., Califano J.A., Tufano R.P. Detectable BRAF mutation in serum DNA samples from patients with papillary thyroid carcinomas. Head Neck. 2009;32:229–234. doi: 10.1002/hed.21178.

Condello V., Macerola E., Ugolini C., De Napoli L., Romei C., Materazzi G., Elisei R., Basolo F. Analysis of circulating tumor DNA does not improve the clinical management of patients with locally advanced and metastatic papillary thyroid carcinoma. Head Neck. 2018;40:1752–1758. doi: 10.1002/hed.25155.

Cradic K.W., Milosevic A., Rosenberg A.M., Erickson L.A., McIver B., Grebe S.K.G. Mutant BRAFT1799A can be detected in the blood of papillary thyroid carcinoma patients and correlates with disease status. J. Clin. Endocrinol. Metab. 2009;94:5001–5009. doi: 10.1210/jc.2009-1349

Kim B.H., Kim I.J., Lee B.J., Lee J.C., Kim S.-J., Kim W.J., Jeon Y.K., Kim S.S., Kim Y.K., Kim I.S. Detection of plasma BRAFV600E mutation is associated with lung metastasis in papillary thyroid carcinomas. Yonsei Med. J. 2015;56:634–640. doi: 10.3349/ymj.2015.56.3.634.

Kwak J.Y., Jeong J.J., Kang S.-W., Park S., Choi J.R., Park S.-J., Kim E.K., Chung W.Y. Study of peripheral BRAFV600E mutation as a possible novel marker for papillary thyroid carcinomas. Head Neck. 2012;35:1630–1633. doi: 10.1002/hed.23195.

Cabanillas M.E., Dadu R., Iyer P.C., Wanland K.B., Busaidy N.L., Ying A.K., Gule-Monroe M., Wang J.R., Zafereo M., Hofmann M.-C. Acquired secondary RAS mutation in BRAFV600E-mutated thyroid cancer patients treated with BRAF inhibitors. Thyroid. 2020;30:1288–1296. doi: 10.1089/thy.2019.0514

Wang J.R., Zafereo M.E., Dadu R., Ferrarotto R., Busaidy N.L., Lu C., Ahmed S., Gule-Monroe M.K., Williams M.D., Sturgis E.M., et al. Complete surgical resection following neoadjuvant dabrafenib plus trametinib in BRAFV600E-mutated anaplastic thyroid carcinoma. Thyroid. 2019;29:1036–1043. doi: 10.1089/thy.2019.0133.

Iyer P.C., Dadu R., Ferrarotto R., Busaidy N.L., Habra M.A., Zafereo M., Gross N., Hess K.R., Gule-Monroe M., Williams M.D., et al. Real-world experience with targeted therapy for the treatment of anaplastic thyroid carcinoma. Thyroid. 2018;28:79–87. doi: 10.1089/thy.2017.0285.

Qin Y., Wang J.R., Wang Y., Iyer P.C., Cote G.J., Busaidy N.L., Dadu R., Zafereo M., Williams M.D., Ferrarotto R., et al. Clinical utility of circulating cell-free DNA mutations in anaplastic thyroid carcinoma. Thyroid. 2021 doi: 10.1089/thy.2020.0296.

Iyer P.C., Cote G.J., Hai T., Gule-Monroe M., Bui-Griffith J., Williams M.D., Hess K., Hofmann M.-C., Dadu R., Zafereo M., et al. Circulating BRAF V600E cell-free DNA as a biomarker in the management of anaplastic thyroid carcinoma. JCO Precis. Oncol. 2018;2 doi: 10.1200/PO.18.00173.

Zhang A., Wang C., Lu H., Chen X., Ba Y., Zhang C., Zhang C.-Y. Altered serum MicroRNA profile may serve as an auxiliary tool for discriminating aggressive thyroid carcinoma from nonaggressive thyroid cancer and benign thyroid nodules. Dis. Markers. 2019;2019:3717683. doi: 10.1155/2019/3717683.

Romeo P., Colombo C., Granata R., Calareso G., Gualeni A.V., Dugo M., de Cecco L., Rizzetti M.G., Zanframundo A., Aiello A., et al. Circulating miR-375 as a novel prognostic marker for metastatic medullary thyroid cancer patients. Endocr. Relat. Cancer. 2018;25:217–231. doi: 10.1530/ERC-17-0389.

Shabani N., Sheikholeslami S., Paryan M., Yeganeh M.Z., Tavangar S.M., Azizi F., Mohammadi-Yeganeh S., Hedayati M. An investigation on the expression of miRNAs including miR-144 and miR-34a in plasma samples of RET -positive and RET -negative medullar thyroid carcinoma patients. J. Cell. Physiol. 2020;235:1366–1373. doi: 10.1002/jcp.29055.

Sriramareddy S.N., Hamoir E., Chavez M., Louis R., Beckers A., Willems L. Tumor cells may circulate in medullary thyroid cancer patients independently of serum calcitonin. Endocr. Relat. Cancer. 2018;25:L59–L63. doi: 10.1530/ERC-18-0180.

Baeuerle P.A., Gires O. EpCAM (CD326) finding its role in cancer. Br. J. Cancer. 2007;96:417–423. doi: 10.1038/sj.bjc.6603494.

Rao C.G., Chianese D., Doyle G.V., Miller M.C., Russell T., Sanders R.A., Jr., Terstappen L.W. Expression of epithelial cell adhesion molecule in carcinoma cells present in blood and primary and metastatic tumors. Int. J. Oncol. 2005;27:49–57. doi: 10.3892/ijo.27.1.49.

Xu J.Y., Handy B., Michaelis C.L., Waguespack S.G., Hu M.I., Busaidy N., Jimenez C., Cabanillas M.E., Fritsche H.A., Cote G.J., et al. Detection and prognostic significance of circulating tumor cells in patients with metastatic thyroid cancer. J. Clin. Endocrinol. Metab. 2016;101:4461–4467. doi: 10.1210/jc.2016-2567.

Cote G.J., Evers C., Hu M.I., Grubbs E.G., Williams M.D., Hai T., Duose D.Y., Houston M.R., Bui J.H., Mehrotra M., et al. Prognostic significance of circulating RET M918T mutated tumor DNA in patients with advanced medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 2017;102:3591–3599. doi: 10.1210/jc.2017-01039.

Solomon B.J., Tan L., Lin J.J., Wong S.Q., Hollizeck S., Ebata K., Tuch B.B., Yoda S., Gainor J.F., Sequist L.V., et al. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J. Thorac. Oncol. 2020;15:541–549. doi: 10.1016/j.jtho.2020.01.006.

Weber T., Lacroix J., Wörner S., Weckauf H., Winkler S., Hinz U., Schilling T., Frank-Raue K., Klar E., Doeberitz M.V.K. Detection of hematogenic and lymphogenic tumor cell dissemination in patients with medullary thyroid carcinoma by cytokeratin 20 and preprogastrin-releasing peptide RT-PCR. Int. J. Cancer. 2003;103:126–131. doi: 10.1002/ijc.10804.

Chiacchiarini M., Trocchianesi S., Besharat Z.M., Po A., Ferretti E. Role of tissue and circulating microRNAs and DNA as biomarkers in medullary thyroid cancer. Pharmacol. Ther. 2021;219:107708. doi: 10.1016/j.pharmthera.2020.107708.

Kilgour E., Rothwell D., Brady G., Dive C. Liquid biopsy-based biomarkers of treatment response and resistance. Cancer Cell. 2020;37:485–495. doi: 10.1016/j.ccell.2020.03.012.

Geeurickx E., Hendrix A. Targets, pitfalls and reference materials for liquid biopsy tests in cancer diagnostics. Mol. Asp. Med. 2020;72:100828. doi: 10.1016/j.mam.2019.10.005.

Rolfo C., Mack P.C., Scagliotti G.V., Baas P., Barlesi F., Bivona T.G., Herbst R.S., Mok T., Peled N., Pirker R., et al. Liquid biopsy for advanced non-small cell lung cancer (NSCLC): A statement paper from the IASLC. J. Thorac. Oncol. 2018;13:1248–1268. doi: 10.1016/j.jtho.2018.05.030.

Опубліковано

2021-09-30

Як цитувати

Полион, Н., Шевченко, Р., & Стариков, В. (2021). МОЖЛИВОСТІ РІДИННОЇ БІОПСІЇ У ДІАГНОСТИЦІ РАКУ ЩИТОВИДНОЇ ЗАЛОЗИ. SWorldJournal, 1(09-01), 99–112. https://doi.org/10.30888/2663-5712.2021-09-01-020

Номер

Розділ

Статті