PREDICTING FROST HEAVE IN ROAD EMBANKMENTS: A MACHINE LEARNING APPROACH INTEGRATING SOIL COMPOSITION AND WEATHER

Authors

  • Yuliia Balashova Ukrainian State University of Science and Technologies ESI «Prydniprovska State Academy of Civil Engineering and Architecture» https://orcid.org/0000-0002-2286-9263
  • Andrii Balashov Ukrainian State University of Science and Technologies ESI «Prydniprovska State Academy of Civil Engineering and Architecture» https://orcid.org/0009-0007-5833-0888

DOI:

https://doi.org/10.30888/2663-5712.2025-33-02-138

Keywords:

frost heave, Support Vector Machines (SVM), cold regions, soil composition, weather data, road embankments, Machine Learning (ML)

Abstract

Frost heave in road embankments is a critical issue in cold-region geotechnical engineering, leading to surface distresses, differential settlements, and maintenance challenges. As climate patterns evolve, accurate frost heave prediction becomes increasin

References

Yuliia Balashova, Viktor Demianenko, Petro Sankov, Vladislav Lukianenko and Khadija Youb / New construction solutions and materials for panels of road pavements / Innovative Technologies in Construction, Civil Engineering and Architecturе. AIP Conference Proceedings 2678, 020001 (2023); 15 February, 2023. – р. 1-7. URL: https://doi.org/10.1063/5.0118620 /

https://aip.scitation.org/doi/pdf/10.1063/5.0118620

Yajun Wu, Encheng Zhai, Xudong Zhang, Gang Wang, Yitian Lu / A study on frost heave and thaw settlement of soil subjected to cyclic freeze-thaw conditions based on hydro-thermal-mechanical coupling analysis / Cold Regions Science and Technology / Volume 188, August 2021, 103296

URL: https://doi.org/10.1016/j.coldregions.2021.103296

Yuliia Balashova, Viktor Demianenko, Nataliia Tkach, and Hennadii Karasev / Ensuring the sustainability of the roadbeds in the zones of the underground mine works / Scopus, ISSN: 25550403, DOI: 10.1051/e3sconf/201912301041. Volume 123. – EDP Sciences, 2019. - p. 01041. - 13с. URL: https://www.scopus.com/authid/detail.uri?authorId=57211522441&eid=2-s2.0-85074287353.

Balashova Yu.B. Enhancing the bearing capacity of soft clay subgrades of roads by using lime and xanthan gum / Monographic series «European Science» Book INTELLECTUAL AND TECHNOLOGICAL POTENTIAL OF THE XXI CENTURY: Karlsruhe, Germany. Book 33. Part 1. CHAPTER 6, 2024, Р. 96-108.

URL: https://desymp.promonograph.org/index.php/sge/issue/view/sge33-01/sge33-01

https://doi.org/10.30890/2709-2313.2024-33-00-007

Ю.Б. Балашова, В.В. Дем’яненко, О.Ю. Усиченко, П.А. Тиквенко, А.О. Балашов / Підвищення несучої здатності слабких водонасичених глинистих основ земляного полотна / Науково-практичний журнал «Український журнал будівництва та архітектури», № 4 (016), 2023, Дніпро: ПДАБА, С. 7-14. URL: http://uajcea.pgasa.dp.ua/issue/view/17138; DOI:10.30838/J.BPSACEA.2312.290823.7.965

URL: http://uajcea.pgasa.dp.ua/article/view/288626/282288’

Yu.B. Balashova, V.V. Demianenko, A.O. Balashov / Еnhancing the stability of soft soil foundations in transportation infrastructure through the аpplication of lime and xanthan gum / SWorld-Ger Conference Proceedings, 1/ No. gec34-00 (2024): Future in the results of modern scientific research '2024 / Karlsruhe, Germany: p. 37–40. ISBN 978-3-98924-057-5. DOI: https://doi.org/10.30890/2709-1783.2024-34-00

URL: https://www.proconference.org/index.php/gec/issue/view/gec34-00

URL: https://doi.org/10.30890/2709-1783.2024-34-00-010 (gec34-01, р. 37)

Nitish Puri, Harsh Deep Prasad, Ashwani Jain / Prediction of Geotechnical Parameters Using Machine Learning Techniques / Procedia Computer Science:

Volume 125, 2018, Pages 509-517 /URL: https://doi.org/10.1016/j.procs.2017.12.066

Chih-Chung Chang, Chih-Jen Lin / LIBSVM: A library for support vector machines / ACM Transactions on Intelligent Systems and Technology (TIST), Volume 2, Issue 3 Article No.: 27, Pages 1 – 27 /

URL: https://doi.org/10.1145/1961189.1961199

Andrii Balashov / Attention-integrated convolutional neural networks for enhanced image classification: a comprehensive theoretical and empirical analysis /

International periodic scientific journal "Modern engineering and innovative technologies" ISSN 2567-5273, Issue №35, Part 2, October 2024, Karlsruhe, Germany, р. 18-27. / URL: https://doi.org/10.30890/2567-5273.2024-35-00-030

http:// www.moderntechno.de/index.php/meit/article/view/meit35-00-030

https://www.moderntechno.de/index.php/meit/issue/view/meit35-02/meit35-02

Andrii Balashov, Olena Ponomarova, Xiaohua Zhai / Multi-Stage Prompt Inference Attacks on Enterprise LLM Systems / https://arxiv.org/pdf/2507.15613

URL: https://doi.org/10.48550/arXiv.2507.15613

Wengang Zhang, Hongrui Li, Liang Han, Longlong Chen, Lin Wang / Slope stability prediction using ensemble learning techniques: A case study in Yunyang County, Chongqing, China / Journal of Rock Mechanics and Geotechnical Engineering / Volume 14, Issue 4, August 2022, Pages 1089-1099

URL: https://doi.org/10.1016/j.jrmge.2021.12.011

Published

2025-09-30

How to Cite

Балашова, Ю., & Балашов, А. (2025). PREDICTING FROST HEAVE IN ROAD EMBANKMENTS: A MACHINE LEARNING APPROACH INTEGRATING SOIL COMPOSITION AND WEATHER. SWorldJournal, 2(33-02), 54–64. https://doi.org/10.30888/2663-5712.2025-33-02-138

Issue

Section

Articles